Service

Axial piston variable pump A7VO

RE 92203/06.09 1/52 Replaces: 05.99

Series 63 Sizes NG250 to 500 Nominal pressure 350 bar Peak pressure 400 bar Open circuit

Contents

Type code for Standard program	2
Technical data	4
Dimensions size 250	10
Dimensions size 250 High-Speed-Version	12
Dimensions size 355	14
Dimensions size 500	16
DR Pressure control	18
DRG remote pressure control	20
LRD Power control with integrated pressure control	22
LRG with remote pressure control	26
LRDH with hydraulic stroke limiter	28
LRDN with hydraulic stroke limiter	31
HD.D Hydraulic control, pilot pressure dependent	34
HD.D with intrgrated pressure control	37
HD.G with remote pressure control	38
EP.D Electric control with proportional valve	40
EP.D with integrated pressure control	42
EP.G with remote pressure control	43
Plug	45
Optical swivel angle indicator	46
Electric swivel angle indicator	47
Installation instructions standard program	48
Installation instructions High-Speed-Version	49
General information	52

Features

- Variable axial piston pump with tapered piston rotary group in bent axis design for hydrostatic drives in open circuits
- For operation in mobile and industrial applications
- The flow is proportional to the drive speed and the displacement and steplessly variable from $q_{v max}$ to $q_{v min} = 0$
- Wide range of controls and adjustment devices
- Compact, robust bearing system for long service life
- Available with Long Life bearings for special fluids and extreme service life requirements
- Pressure control is standard
- Optical or electric swivel angle indicator available

Type code for standard program

		A7V		0			/	63		_	V					
(D1	02	03	04	05	06		07	08		09	10		11	12	13
Fluid / Version 250 355 500																
Mineral oil and HFD. HFD only in conjunction with Long-Life-Lagerung 1" (no code)																
01 For operation on HFC, special high performance version A4VSOF see RE 92053																
High-Speed-Version (only mineral oil)												H ¹⁾				
												L				
00	Axia	l piston unit		· .		0501			4001							A 71/
02	Ben	t axis design, va	ariable, r	nominal p	oressure	350 bar	; реак р	oressure	400 bar							A7V
	Drive	e shaft bearing	IS									2	50	355	500	
03	Mec	chanical bearing	ls (no co	ode)									•	•	•	
	Lon	g-Life-bearings											•			L
	Туре	of operation														
04	Pun	np, open circuit														0
	Size															
	Dis	placement V _{amo}	[cm ³]									2	50	355	500	
05		NG28 to160 s	ee RF 9	2202												
]
	Con	trol devices										2	50 0	355	500	
	Pres	s <u>sure control</u>	-1												•	
	_	Pressure contr	ol, remo	tely adju	stable									•	•	DRG
	Pow	/er control			I (C	- 44 (•			
		with integrated	pressur	e contro	i (fixed s	setting)			A	10						
		hydraulic initial posi	stroke lir ition V	miter					$\Delta p =$	= 10 bar			-			
			nion v _{gm}	ax					$\frac{\Delta p}{\Delta p}$	= 25 bar			-			
		hudroulio	atraka li	mitor					<u></u>	– 30 Dai – 10 bor			_			
		initial posi	ition Vam	in					$\frac{\Delta p}{\Delta n} =$	= 10 Dai = 25 har						
									$\Delta p = 25 \text{ bar}$ $\Delta n = 35 \text{ bar}$				-			I RDN3
		with pressure	control r	emotelv	adiustat	ole			<u> </u>	00 54			•	•	•	LRG
		hvdraulic	stroke lir	niter					Δp =	= 10 bar			•	•	•	LRGH1
		initial posi	ition V _{g m}	ax					$\Delta p =$	= 25 bar			•	•	•	LRGH2
									$\Delta p =$	= 35 bar			•	•	•	LRGH3
06		hydraulic	stroke lir	niter					Δp =	= 10 bar			•		•	LRGN1
		initial posi	ition V_{gm}	in					Δp =	= 25 bar			•			LRGN2
									Δp =	= 35 bar			•		•	LRGN3
	Hyd	raulic control, p	ilot pres	sure dep	pendent,											
		with integrated	pressur	e contro	l (fixed s	etting)			<u>Δ</u> p =	= 10 bar			•			HD1D
								<u>Δ</u> p =	= 25 bar			•	•	•	HD2D	
								Δp =	= 35 bar			•	•	•	HD3D	
		with pressure of	control, r	emotely	adjustak	ble			<u>Δ</u> p =	= 10 bar			•	•	•	HD1G
									<u>Δ</u> p =	= 25 bar			•	•		HD2G
$\Delta p = 35 \text{ bar} \qquad \bullet \bullet \bullet$										HD3G						
	Hyd	raulic control, w	vith elect	tric prop	ortional y	valve ²⁾					10.1	,	_			
		with integrated	pressur	e contro	I (fixed s	etting)			Cor		age 12 $\sqrt{2}$					
									Cor		age 24	v 1	-			EP2D
		with pressure of	control, r	emotely	adjustat	bie						/ ·	-			EPIG
									con		iye 24 V					EP2G

¹⁾ recommended for new projects
 ²⁾ for operation on HFD-fluids please observe RE 29181 (proportional pressure reducing valve type DRE4K)

Type code for standard program

		A7V		0			1	63		_	V				
C)1	02	03	04	05	06		07	08		09	10	11	12	13
	Series 250 355 500														
07	Serie	es 6, Index 3										•	•	•	63
	Direc	tion of rotatio	on									250	355	500	
00	with	view on drive s	shaft						clo	ockwise					R
08									CO	unter clo	ockwise	•		•	L
	Seal	S										250	355	500	
09	FKN	I (Fluoro-rubbe	r)									•			V
	Drive	chaft										250	255	500	
	Solir	ed shaft to DI	N 5480									250	355	500	7
10	Kova	d parallal shaft		6995											D
	Кеус	eu paraller shar		0000											F
	Mou	nting flange										250	355	500	
11	Simi	lar to ISO 3019	9-2						4-hole			•	-	-	В
									8-	nole		-		•	Н
	Servi	ice line conne	ctions									250	355	500	
	SAE SAE	-flanged port E flanged port S	3 or A, at 6, at rear(rear (me metric fi	etric fixir xing bol	ig bolts) ts)						•	•	•	01
12	12 SAE- flanged ports B or A, on opposite side (metric fixing bolts) SAE- flanged port S, on opposite side (metric fixing bolts)									•	•	02			
	Swiv	el angle indica	ator									250	355	500	
	With	out swivel ang	le indica	tor (no c	ode)									•	
13	With	optical swivel	angle in	dicator								•	•	•	V
	With	electric swive	l angle in	ndicator								•		•	E

Note

Exact value for $V_{g min}$ and $V_{g max}$ (displacement) must be stated in clear text when ordering ($V_{g min}$ cm³/rev., $V_{g max}$ cm³/rev.) Setting range $V_{g min}$: 0 to 0.2 • $V_{g max}$

$$V_{g max}$$
: $V_{g max}$ down to 0.8 • $V_{g max}$

 \bullet = Available

- = Not available

= Preferred program

Hydraulic fluid

For extensive information on the selection of hydraulic fluids and application conditions please consult our data sheets RE 90220 (mineral oils), RE 90221 (ecologically acceptable fluids) and RE 90223 (HF-fluids).

The variable pump A7VO is not suitable for operation on HFA fluids. When operating on HFD or ecologically acceptable fluids, limitations to the technical data and seals according to RE 90223 and RE 90221 must be observed.

For the sizes 250 and 355 with **operation on HFC-fluids**, the **A4VSO.***F* must be used. For certain selected HFC fluids the same pressures and speeds are permissible as for operation on mineral oil. See RE 92053.

When ordering, state the fluid to be used in clear text.

Operating viscosity range

In order to obtain optimum efficiency and service life, we recommend that the operating viscosity (at operating temperature) be selected in the range

 $v_{opt} = opt.$ viscosity range 16...36 mm²/s

referred to tank temperature (open circuit).

Limit of viscosity range

For critical operating conditions the following values apply:

$$\begin{split} \nu_{\text{min}} &= 10 \text{ mm}^2/\text{s} \\ & \text{for short periods (t < 3 min)} \\ & \text{at max. permissible case drain temperature} \\ & t_{\text{max}} = +90^{\circ}\text{C}. \end{split}$$

 $v_{max} = 1000 \text{ mm}^2/\text{s}$

for short periods (on cold start maximum operating viscosity of 100 mm²/s should be reached within 15 min) t_{min} = -25°C

Note, that the maximum fluid temperature of 90°C may not be exceeded at any point (e.g. around the bearings). The fluid temperature in the bearing area is influenced by drive speed and pressure, and is typically 12 K higher than the average case drain temperature.

Temperature range

(see selection diagram)

 $\begin{array}{l} t_{min} = -25^{\circ}C \\ t_{max} = +90^{\circ}C \end{array}$

For detailed information on operation with low temperatures see RE 90300-03-B.

Notes on the selection of hydraulic fluids

In order to select the correct fluid, it is necessary to know the operating temperature in the tank (open circuit) in relation to the ambient temperature.

The hydraulic fluid should be selected so that within the operating temperature range, the viscosity lies within the optimum range (v_{opt}) see shaded section in the selection diagram. We recommend, that the higher viscosity grade is selected in each case.

Example: at an ambient temperature of X° C the operating temperature in the tank is 60° C. In the optimum viscosity range (v_{opt} ; shaded area), this corresponds to grades VG 46 or VG 68; select: VG 68.

Important:

The case drain temperature is influenced by pressure and speed and is always higher than the tank temperature. However the max. temperature at any point in the system may not exceed 90° C.

If the above conditions cannot be met, due to extreme operating parameters we recommend a housing flushing via port U.

Filtration

The finer the filtration, the better the achieved cleanliness of the fluid and the longer the life of the axial piston pump.

To ensure a reliable functioning of the axial piston unit, a minimum cleanliness class of

20/18/15 acc. to ISO 4406 is necessary.

Operating pressure range

Depending on the operating fluid, limitations may apply, see the chapter on hydraulic fluids, page 4.

Pressure at the outlet ports (pressure ports) A or B

Nominal pressure p _{nom}	350 bar absolute
Peak pressure p _{max}	400 bar absolute
Total operating period	300 h
Individual operating period	1 s

Minimum pressure (in pump outlet)	10 bar
For a lower pressure, please consult us.	

Rate of pressure change R_A 16000 bar/s

Time t

Under pulsating load conditions above 315 bar we recommend the use of a splined shaft (to DIN 5480).

Pressure at the inlet port S (Suction)

Minimum inlet pressure ps min -	0.8 bar absolute
Maximum inlet pressure p _{S max}	8 bar absolute

Minimum inlet pressure

In order to avoid damage to the axial piston pump a certain minimum inlet pressure at the pump's suction port S is necessary. This minimum inlet pressure is dependent on the drive speed and the displacement of the axial piston unit.

Note

- Maximum speed n_{max}
- (Speed limit, see table of values, page 8)
- Minimum and maximum pressure at port S
- Permissible values for the shaft seal (see diagram on page 7)

An increase in inlet pressure results in a higher control begin of the **LR**-control curve as well as a rise of the LR.**H**- and LR.**N**pilot pressure characteristics.

Factory setting of the control begin is done at an inlet pressure $p_{S}=1$ bar absolute.

Exact details of the shifts in the control curves on request.

Definition

Nominal pressure pnom

The nominal pressure corresponds to the maximum design pressure.

Peak pressure pmax

The peak pressure corresponds to the maximum pressure within the individual operating period. The total of the individual operating periods must not exceed the total operating period.

Minimum pressure (in pump outlet)

Minimum pressure in the pump outlet side (port A or B) that is required in order to prevent damage to the axial piston unit.

Rate of pressure change R_A

Maximum permissible pressure build-up and pressure reduction speed with a pressure change over the entire pressure range.

Time t

Total operating period = $t_1 + t_2 + ... + t_n$

Direction of flow

Direction of rotation, with view on shaft end							
clockwise	counter clockwise						
S to B	S to A						

Long-Life-Bearings (L)

For long service life requirements and when using HFD-fluids. Identical external dimensions as units with standard bearings. A retroactive conversion to Long-Life Bearings is possible. It is recommended, that the bearings and housing be flushed via port U.

Bearing flushing

Flushing flows (recommended)

NG	250	355	500
q _{flow} (L/min)	10	16	16

Operation in standby (in pressure control mode)

Operation in standby, without external flushing via port U is only permissible for short periods:

A7VO maximum	15 min at 200 bar
	3 min at 350 bar
HA7VO maximum	5 min at 200 bar
	1 min at 350 bar

For other pressure levels information on request

Influence of drive speed can be neglected

At tank temperature $\leq 50^{\circ}$ C

For longer periods of standby operation it is necessary to implement housing flushing vie port U.

Flushing flows for A7VO same as bearing flushing

Flushing flows HA7VO (High-Speed-version)

Shaft seal FKM (Fluoro-rubber)

Permissible case pressure

The service life of the shaft seal is influenced by pump drive speed and case pressure. It is recommended not to exceed the continuous averaged case pressure of 3 bar abs. (max. perm. case pressure 4 bar abs. at reduced speed, see diagram).

The case pressure must be equal to or higher than the external pressure on the shaft seal (in case of the standard version). For the High-Speed-version please consult us.

Special operating conditions may make it necessary to restrict these values .

Important:

- maximum permissible drive speed of variable pump (see table of values, page 8)
- max. permissible case pressure $p_{S\,\text{max}}$ 4 bar
- an increase in case pressure results in a higher control begin of the **HD** and **DR** controls.

Exact details of the shift in control characteristics on request. Factory setting of the control begin at $p_s = 1$ bar.

Temperature range

The FKM shaft seal is suitable for case temperatures of -25° C to +90°C.

Table of values (theoretical values, without considering η_{mh} and η_{v} ; values rounded off)

Size			NG	250		355	500
		High-Speed	d-Version		250H		
Displacement		$V_{g max}^{1)}$	cm³	250	250	355	500
		$V_{g min}^{1)}$	cm³	0	0	0	0
Speed maximum 2)4)	at $V_{g max}$	n _{nom}	rpm	1500	1800	1320	1200
Speed maximum 3)4)	at $V_g \leq V_{g max}$	n _{max}	rpm	1800	-	1600	1500
Maximum flow 4)	at n _{nom} (V _{g max})	$q_{v max nom}$	L /min	375	450	469	600
Maximum power 4)	at $q_{v\text{nom}}$ and Δp = 350 bar	Pnom	kW	219	262	273	350
Torque ⁴⁾	at $V_{g max}$ and $\Delta p = 350$ bar (continuous operation)	T _{max}	Nm	1391	1391	1978	2785
Rotary stiffness	$V_{g max}$ to 0.5 • $V_{g max}$	C _{min}	Nm/rad	59500	59500	74800	115000
	0.5 • $V_{g max}$ to $O_{(interpolated)}$	C _{max}	Nm/rad	181000	181000	262000	391000
Moment of inertia rotary group	0	J_{TW}	kgm²	0.061	0.061	0.102	0.178
Angular acceleration maximur	n	α	rad/s ²	10000	10000	8300	5500
Case volume		V	L	3	3	5	7
Weight approx.		m	kg	102	102	173	234

¹⁾ Standard setting for limitation of the swivel angle. If another setting is required, please state in clear text.

$$V_{g max}$$
: $V_{g max}$ to 0.8 • $V_{g max}$

 $V_{g min}$: 0 to 0.2 • $V_{g max}$

²⁾ Nominal speed in self priming operation with an absolute pressure (p_s) of 1 bar at inlet port S and mineral oil with a density of 0,88 kg/L

³⁾ The values apply for $V_g \leq V_{g max}$ or an increase in inlet pressure p_s at the inlet port S (see diagram page 5)

⁴⁾ Depending on the type of fluid, restrictions may be necessary, see chapter hydraulic fluids page 4

Important

Setting range

Exceeding the maximum or falling below the minimum permissible values can lead to a loss of function, a reduction in operational service life or total destruction of the axial piston unit. More details on limiting values for speed fluctuations, reduction in angular acceleration dependent on the frequency and the permissible starting angular acceleration (below the maximum angular acceleration) can be found in data sheet RE 90261.

Determination of size

Flow	qv	= -	V _g • n • η _ν 1000		[L/min]
Drive torque	т	= '	$\frac{V_g \bullet \Delta p}{20 \bullet \pi \bullet \eta_{mh}}$		[Nm]
Power	Ρ	= -	$\frac{2\pi \cdot \mathbf{T} \cdot \mathbf{n}}{60000} =$	$\frac{q_{V} \bullet \Delta p}{600 \bullet \eta_{t}}$	[kW]

- V_g = Geometr. displacement per revolution in cm³
- $\Delta p = Differential pressure in bar$
- n = Speed in rpm
- η_v = Volumetric efficiency
- η_{mh} = Mechanical-hydraulic efficiency
- η_t = Overall efficiency ($\eta_t = \eta_v \bullet \eta_{mh}$)

Permissible radial and axial forces on the drive shaft

Size		NG		250	355	500
Radial force, maximum ¹⁾ (at $p_{A,B} = 1$ bar)	Fq 7/2 X/2 X/2 X/2	F _{q max}	N	1200	1500	1900
Axial force, maximum ²⁾ (at $p_{A,B} = 1$ bar)	al force, maximum ²⁾ $p_{A,B} = 1 \text{ bar}$	+ F _{ax max}	Ν	4000	5000	6250
		- F _{ax max}	Ν	1200	1500	1900

¹⁾ When at standstill or pressureless circulation of the axial piston unit. Under pressurized condition higher forces are permissible, please consult us

²⁾ Maximum permissible axial force at standstill or pressureless circulation of the axial piston unit

Regarding the permissible axial force, the direction of the force must be taken into consideration:

 $-F_{ax max}$ = increase of bearing life

 $+ F_{ax max} =$ decrease of bearing life

Influence of the radial force F_q on the bearing life

Through a favourable direction of the actuating radial force F_{q} , the internal load on the bearings can be compensated for and in this manner an optimum on bearing life can be obtained, please consult us.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

73

112

130

Ports A (B) and S on opposite sides (02), clockwise rotation

73

130

112

(without control devices)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports A (B) and S at rear (01)

Drive shafts

Ports Standard Size²⁾ Designation Port for Peak pressure State [bar]³ SAE J5184) A, (B) Pressure outlet (high pressure range) 1 1/4in 400 Ο Fixing thread **DIN 13** M14x2; 19 deep Suction (standard pressure range) SAE J5184) S 3 in 0 7 **DIN 13** Fixing thread M16x2; 24 deep DIN 3852 U Flushing M14x1.5; 12 deep З Х Case drain DIN 3852 R₁ M22x1.5; 14 deep З 0 DIN 3852 R_2 Case drain Х M22x1.5; 14 deep 3 DIN 3852 Measuring pressure A, B Х M14x1.5; 12 deep 400 M_A, M_B

²⁾ For the max. tightening torques the general information on page 52 must be observed

³⁾ Depending on the application, momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.

⁴⁾ Only dimensions to SAE J518

O = Must be connected (closed on delivery)

X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions size 250 High-Speed-Version

Ports A (B) and S on opposite sides (02), clockwise rotation

(without control devices)

Ports A1, B1 and S1 closed pressure tight with plug or flange plate, Dimensions like A, B and S

Dimensions size 250 High-Speed-Version

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports A (B) and S at rear (01)

Drive shafts

¹⁾ Centering bore to DIN 332 (Thread to DIN 13)

Ports

Designation	Port for	Standard	Size ²⁾	Peak pressure [bar] ³	State
A, (B)	Pressure outlet (high pressure series) Fixing thread	SAE J5184) DIN 13	1 1/4in M14x2; 19 deep	400	0
A ₁ , (B ₁)	2. Pressure outlet (high pressure series) Fixing thread	SAE J5184) DIN 13	1 1/4in M14x2; 19 deep	400	X ⁵⁾
S	Suction (standard pressure series) Fixing thread	SAE J5184) DIN 13	3 in M16x2; 24 deep	3 ⁶⁾	0
S ₁	2. Suction (standard pressure series) Fixing thread	SAE J5184) DIN 13	3 in M16x2; 24 deep	3 ⁶⁾	X ⁷⁾
U	Flushing	DIN 3852	M14x1.5; 12 deep	3	Х
R ₁ , R ₂	Case drain	DIN 3852	M22x1.5; 14 deep	3	X ⁸⁾
M _A , M _B	Measuring outlet pressure A, B	DIN 3852	M14x1.5; 12 deep	400	Х

²⁾ For the max. tightening torques the general information on page 52 must be observed

³⁾ Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.

⁴⁾ Only dimensions to SAE J518

⁵⁾Closed pressure tight with plug M33x2

⁶⁾ Note: suction chamber and leakage chamber are connected inside pump housing, observe permissible pressure load on shaft seal, see page 7

 $^{\rm 7)}$ Closed pressure tight with flange plate

⁸⁾ Both ports are plugged. Leakage chamber is connected with suction chamber. Separate case drain line to tank is not necessary.

O = Must be connected (closed on delivery)

X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports A (B) and S on opposite sides (02), clockwise rotation

(without control devices)

View Z counter clockwise rotation

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports A (B) and S at rear (01)

Drive shafts

¹⁾ Centering bore to DIN 332 (Thread to DIN 13)

Ports					
Designation	Port for	Standard	Size ²⁾	Peak pressure [bar] ³⁾	State
A, (B)	Pressure outlet (high pressure range) Fixing thread	SAE J5184) DIN 13	1 1/2in M16x2; 21 deep	400	0
S	Suction (standard pressure range) Fixing thread	SAE J5184) DIN 13	3 1/2 in M16x2; 24 deep	7	0
U	Flushing	DIN 3852	M14x1.5; 12 deep	3	Х
R ₁	Case drain	DIN 3852	M33x2; 18 deep	3	0
R ₂	Case drain	DIN 3852	M33x2; 18 deep	3	Х
M _A , M _B	Measuring outlet pressure A, B	DIN 3852	M14x1.5; 12 deep	400	Х

²⁾ For the max. tightening torques the general information on page 52 must be observed

³⁾ Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.

⁴⁾ Only dimensions to SAE J518

O = Must be connected (closed on delivery)

X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports A (B) and S on opposite sides (02), clockwise rotation

(without control devices)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports A (B) and S at rear (01)

Drive shafts

Ports

1 0110					
Designation	Port for	Standard	Size ²⁾	Peak pressure [bar] ³⁾	State
A, (B)	Pressure outlet (high pressure range) Fixing thread	SAE J5184) DIN 13	1 1/2in M16x2, 21 deep	400	0
S	Suction (standard pressure range) Fixing thread	SAE J5184) DIN 13	4 in M16x2, 21 deep	7	0
U	Flushing	DIN 3852	M18x1.5; 12 deep	3	Х
R ₁	Case drain	DIN 3852	M33x2; 18 deep	3	0
R ₂	Case drain	DIN 3852	M33x2; 18 deep	3	Х
M _A , M _B	Measuring outlet pressure A, B	DIN 3852	M14x1.5; 12 deep	400	Х

 $^{\scriptscriptstyle 2)}$ For the max. tightening torques the general information on page 52 must be observed

³⁾ Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.

⁴⁾ Only dimensions to SAE J518

O = Must be connected (closed on delivery)

X = Plugged (in normal operation)

DR Pressure control

Initial position: V_{g max} in pressureless condition

The pressure control limits the maximum pump output pressure within the control range of the pump. This max. pressure level can be set at the integrated control valve. When reaching this preset level, the pump destrokes and supplies only the amount of flow as needed by the users (actuators).

Setting range of the pressure control _____50 to 350 bar Standard setting is 350 bar.

If another setting is required please state in clear text.

Important

- A recommended main line relief valve in the system to safeguard against excessive pressure spikes must have a cracking pressure at least 20 bar above the DR control setting.
- The control begin and the DR-control characteristic is influenced by housing pressure. An increase in housing pressure results in a higher control begin and thus a parallel shifting of the control curve (see page 7).
- Operation in standby see page 6.

Characteristic

Schematic

Sub assemblies

1 Integrated pressure control valve

Ports for

M Measuring pressure on control piston (plugged)

Dimensions **DR**

For general dimensions see pages 10 to 17

Clockwise rotation

installation drawing. Dimensions in mm.	

Before finalizing your design, request a binding

NG	A ₁	A ₂	A ₃	A_4	A_5	l
250	385	161	248	297	227	
355	430	175	279	333	257	-
500	490	200	306	382	284	

Counter clockwise rotation

Ports

Designation	Port for	Standard	Size ²⁾	Peak pressure [bar] ³⁾	State
М	Measuring pressure on control piston	DIN 3852	M14x1.5; 12 deep	400	Х

²⁾ For the max. tightening torques the general information on page 52 must be observed

³⁾ Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.

X = Plugged (in normal operation)

DRG Pressure control remotely adjustable

Initial position: Vg max in pressureless condition

In order to obtain a remote adjustment of the pressure control level a separate pilot pressure relief (item 2) valve must be connected to port X_3 . This relief valve is not included in the supply of the DRG control.

Setting range of the pressure control _____ 50 to 350 bar

The spring force on the pressure compensator spool causes a differential pressure between pump output pressure and pressure at X_3 (as soon as the relief valve opens and the pressure control function takes place). Standard setting of this differential pressure 25 bar.

As long as the the pressure is below the set pressure of the relief valve, the pressures on both sides of the pressure compensator spool are equal and the additional spring force keeps this spool in a shifted position (Spool in equilibrium).

As soon as the set pressure of the relief valve is reached, this valve will start to open and the pilot flow will result in a differential pressure over the compensator spool, which causes this spool to shift and brings the pump to a smaller displacement. $V_{g\,\text{min}}$.

The differential pressure at the pressure compensator spool (item 1) is normally set at 25 bar, which results in a pilot flow at X_3 of approx. 2 L/min.

In case another setting (range 14 to 50 bar) is required, please state in clear text when ordering.

As a seperate pilot relief valve we recommend:

DBD 6 (hydraulic) see RE 25402

DBETR-SO 437 with dampened spool (electric) see RE 29166

The max. line lenght should not exceed 2 m.

Note

- The beginning of control and the DRG control characteristic are influenced by housing pressure. An increase in housing pressure results in a higher beginning of control (see page 7) and thus a parallel shift of the control characteristic.
- Standby operation see page 6.

Characteristic

Schematic

Sub assemblies

- 1 Integrated pressure compensator
- 2 Separate pilot pressure relief valve (not in scope of supply)

Ports for

- X₃ Separate pressure relief valve
- M Measuring pressure on control piston (plugged)

Dimensions drG

General dimensions see page 10 to 17

Clockwise rotation

Counter clockwise rotation

Ports

Designation	Ports for	Standard	Size ²⁾	Peak pressure [bar] ³⁾	State
X ₃	Separate pressure relief valve	DIN 3852	M14x1.5; 12 deep	400	0
М	Measuring pressure on control piston	DIN 3852	M14x1.5; 12 deep	400	Х

²⁾ For the max. tightening torques the general information on 52 must be observed

³⁾ Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices or fittings.

O = Must be connected (closed on delivery)

X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

NG	A ₁	A ₂	A ₃	A_4	A ₅
250	385	161	248	380	74
355	430	175	279	425	82
500	490	200	306	483	96
NG	A ₆	A ₇	A ₈		
NG 250	A ₆ 112	A 7 297	A ₈ 227		
NG 250 355	A ₆ 112 131	A ₇ 297 333	A ₈ 227 257		

LRD Power control with integrated pressure control

Initial position: Vg max in pressureless condition

Power control

The power control adjusts the pump displacement in relation to the operating pressure in such a manner, that a given drive power at constant drive speed is not exceeded.

 $p_{B} \bullet V_{g} = constant (drive power)$

 p_B = operating pressure; V_g = displacement

This precise control along the hyperbolic control characteristic permits an optimum utilisation of drive power.

The operating pressure acts on a lever mechanism via the measuring spool in the displacement control piston. It is offset by the externally set spring force which acts on the pilot valve and determines the power setting.

When the operating pressure exceeds the set spring force, the power control pilot valve is actuated via the lever mechanism and the pump swivel towards a smaller displacement $V_{g\,min}$. This in turn reduces the effective moment on the lever mechanism and the operating pressure can increase in the same ratio by which the pump output flow is reduced, without exceeding the installed drive power ($p_B \cdot V_g = constant$).

Setting range for the control begin of the power control from_____50 to 300 bar.

Note

- The control begin and the LR-power control characteristic are influenced by pump inlet pressure. An increase in pump inlet pressure results in a higher control begin (see page 5) and thus a parallel shift of the control characteristic.
- The hydraulic output power (LR-characteristic) is influenced by pump efficiency

When ordering please state in clear text:

- Drive power P in kW
- Drive speed n in rpm
- Maximum flow $q_{v \ max}$ in L/min

The integrated pressure control is standard and overrides the power control, description see page 24

Characteristic

Schematic

Power control with integrated pressure control

Sub assemblies

- 1 Pressure control
- 3 Power control

Port for

M Measuring pressure on control piston (plugged)

Dimensions see page 25

LRD Power control with integrated pressure control

Initial position $V_{g max}$

Power control characteristics in kW

LRD with integrated pressure control

Initial position: Vg max in pressureless condition

The pressure control is overriding the power control.

It protects the pump against excessive pressure and consequential damage.

The pressure control valve is integrated into the port plate and can be set externally.

Upon reaching the set pressure level the pump will destroke towards lower displacement.

Setting range of the pressure control_____ 50 to 350 bar Standard setting: 350 bar.

If another setting is required please state in clear text.

Note

- A recommended main line relief valve in the system to safeguard against excessive pressure spikes must have a cracking pressure at least 20 bar above the pressure control setting.
- The control begin and the pressure control characteristic are influenced by housing pressure. An increase in housing pressure results in a higher control begin (see page 7) and thus a parallel shift of the characteristic.
- Standby operation see page 6.

Characteristic

Schematic

Power control with integrated pressure control

Sub assemblies

- **1** Pressure control
- 3 Power control

Port for

M Measuring pressure on control piston (plugged)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions LRD

General dimensions see page 10 to 17

Clockwise rotation

NG	A ₁	A ₂	A ₃	A_4	A ₅
250	385	170	248	297	227
355	430	175	279	333	257
500	490	200	306	382	284

Counter clockwise rotation

Ports

Designation	Port for	Standard	Size ²⁾	Peak pressure [bar] ³⁾	State
М	Measuring pressure on control piston	DIN 3852	M14x1.5; 12 deep	400	Х

²⁾ For the max. tightening torques the general information on page 52 must be ovserved

³⁾ Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.

X = Plugged (in normal operation)

LRG with remotely adjustable pressure control

Initial position: Vg max in pressureless condition

The remotely adjustable pressure control overrides the power control.

In order to obtain a remote adjustment of the pressure control level a separate pilot pressure relief (item 2) valve must be connected to port X_3 . This relief valve is not included in the supply of the DRG control.

Setting range of the pressure control _____ 50 to 350 bar

The spring force on the pressure compensator spool causes a differential pressure between pump output pressure and pressure at X_3 (as soon as the relief valve opens and the pressure control function takes place). Standard setting of this differential pressure 25 bar.

As long as the the pressure is below the set pressure of the relief valve, the pressures on both sides of the pressure compensator spool are equal and the additional spring force keeps this spool in a shifted position (Spool in equilibrium).

As soon as the set pressure of the relief valve is reached, this valve will start to open and the pilot flow will result in a differential pressure over the compensator spool, which causes this spool to shift and brings the pump to a smaller displacement $V_{g\,min}$.

Upon reaching the set pressure control level (set pressure at pilot relief valve plus differential pressure at pressure control compensator) the pump will go over to the pressure control mode.

The differential pressure at the pressure compensator spool (item 1) is normally set at 25 bar, which results in a pilot flow at X_3 of approx. 2 L/min.

In case another setting (range 14 to 50 bar) is required, please state in clear text when ordering.

As a seperate pilot relief valve we recommend:

DBD 6 (hydraulic) see RE 25402

DBETR-SO 437 with dampened spool (electric) see RE 29166

The max. line lenght should not exceed 2 m.

Note

- The beginning of control and the DRG control characteristic are influenced by housing pressure. An increase in housing pressure results in a higher beginning of control (see page 7) and thus a parallel shift of the control characteristic.
- Standby operation see page 6.

Characteristic

Schematic

Power control with remotely adjustable pressure control

Sub assemblies

- 1 Integrated pressure control compensator
- 2 Separate pressure relief valve (not in scope of supply)
- 3 Power control

Ports for

- X₃ Separate pressure relief valve
- M Measuring pressure on control piston (plugged)

Dimensions LRG

General dimensions see page 10 to 17

Clockwise rotation

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

NG	A ₁	A ₂	A ₃	A_4	A_5	
250	385	170	248	380	74	
355	430	175	279	425	82	
500	490	200	306	483	96	

NG	A ₆	A ₇	A ₈	
250	112	297	227	
355	131	333	257	
500	142	382	284	

Counter clockwise rotation

Ports

Designation	Ports for	Standard	Size ²⁾	Peak pressure [bar] ³⁾	State
X ₃	Separate pressure relief valve	DIN 3852	M14x1.5; 12 deep	400	0
М	Measuring pressure on control piston	DIN 3852	M14x1.5; 12 deep	400	Х

 $^{\mbox{\tiny 2)}}$ For the max. tightening torques the general information on 52 must be observed

³⁾ Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices or fittings.

O = Must be connected (closed on delivery)

X = Plugged (in normal operation)

LRDH with hydraulic stroke limitation

Initial position: $V_{g max}$ in pressureless condition

The hydraulic stroke limitation is used for infinite adjustment of the displacement from $V_{g max}$ bis $V_{g min}$.

It is overridden by the power control.

The displacement is set by the pilot pressure applied at port X1

Maximum permissible pilot pressure _____ 100 bar

The hydraulic stroke limitation takes the required control pressure from the pump output pressure. It must be noted, that the pump operating pressure must be at least 40 bar.

If the pressure is lower, the pump must be supplied with an external control pressure of at least 40 bar into port X_2 .

The control begin is adjustable.

Control begin (bar), please state in clear test when ordering.

Note

 The control begin and the LRDH-control characteristic are influenced by pump inlet pressure. An increase in pump inlet pressure results in a higher control begin (see page 5) and thus a parallel shift of the control characteristic.

Schematic

Power control with integrated pressure control and hydraulic stroke limitation H

Sub assemblies

- 1 Pressure control
- 3 Power control
- 4 Hydraulic stroke limitation H

Ports for

- X₁ Pilot pressure
- X₂ External control pressure (plugged)
- M Measuring pressure on control piston(plugged)

Dimensions see page 30

LRDH with hydraulic stroke limitation

Characteristics

H2 Δp_{st} for hydraulic stroke limitation _____ 25 barControl begin adjustable_____ 5 to 50 barStandard setting of control begin _____ 10 bar

 H3 Δp_{st} for hydraulic stroke limitation ______ 35 bar

 Control begin adjustable ______ 7 to 50 bar

 Standard setting of control begin ______ 10 bar

Dimensions LRDH

General dimensions see page 10 to 17

Clockwise rotation

Counter clockwise rotation

X1 A8 A6 to mounting flange face

Port X₁, showing NG355 and 500

Ports

Designation	Ports for	Standard	Size ²⁾	Peak pressure [bar] ³⁾	State
X ₁	Pilot pressure	DIN 3852	M14x1.5; 12 deep	100	0
X ₂	External control pressure	DIN 3852 DIN 3852	M14x1.5; 12 deep (NG250 a. 355) M18x1.5; 12 deep (NG500)	400 400	X X
М	Measuring pressure on control piston	DIN 3852	M14x1.5; 12 deep	400	Х

²⁾For the max. tightening torques the general information on 52 must be observed

³⁾Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices or fittings.

O = Must be connected (closed on delivery)

X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

NG	A ₁	A ₂	A ₃	A_4	A ₅
250	385	188	248	370	144
355	432	203	279	416	157
500	490	215	306	470	169
NG	A ₆	A ₇	A ₈	A ₉	A ₁₀
250	327	123	49	297	227
355	366	137	54	333	257
500	417	148	61.5	382	284

LRDN with hydraulic stroke limitation

Initial position: Vg min in pressureless condition

The hydraulic stroke limitation is used for infinite adjustment of the displacement from $V_{g\,\text{min}}$ to $V_{g\,\text{max}}$

It is overridden by the power control.

Displacement is set by the pilot pressure applied at port X₁.

Maximum permissible pilot pressure p_____100 bar

A minimum pressure of 40 bar is required for hydraulic stroke limitation. The necessary control fluid is taken from the pump outlet pressure side.

An external control pressure is not required when the operating pressure > 40 bar and $V_{g\,min}$ > 0. In this case the port X_2 must be plugged prior to commissioning. Otherwise an external control pressure source of at least 40 bar must be connected to port X_2 .

The control begin is adjustable. Control begin (bar), please state in clear text when ordering.

Note

 The control begin and the LRDN-control characteristic are influenced by pump inlet pressure. An increase in pump inlet pressure results in a higher control begin (see page 5) and thus a parallel shift of the control characteristic.

Schematic

Power control with integrated pressure control and hydraulic stroke limitation N

Sub assemblies

- 1 Pressure control
- 3 Power control
- 5 Hydraulic stroke limitation N

Ports for

- X₁ Pilot pressure
- X₂ External control pressure
- M Measuring of pressure on control piston (plugged)

Dimensions see page 33

LRDN with hydraulic stroke limitation

Characteristics

 N1 Δp_{st}for hydraulic stroke limitation______10 bar

 Control begin adjustable______2 to 20 bar

 Standard setting of control begin ______5 bar

N2 Δp_{st} for hydraulic stroke limitation	25 bar
Control begin adjustable	5 to 50 bar
Standard setting of control begin	10 bar

N3 Δp_{st} for hydraulic stroke limitation ______ 35 bar Control begin adjustable______ 7 to 50 bar Standard setting of control begin ______ 10 bar

Dimensions LRDN

General dimensions see page 10 to 17

Clockwise rotation

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

NG	A 1	A ₂	A ₃	A_4	A_5	A ₆
250	385	170	275	276	248	248
355	430	175	300	315	275	278
500	492	200	325	359	300	322
NG	A ₇	A ₈	A۹	A ₁₀	A ₁₁	
NG 250	A 7 210	A 8 49	A ₀ 377	A ₁₀ 116	Α ₁₁ 14	
NG 250 355	A 7 210 234	A ₈ 49 54	A ₉ 377 425	A ₁₀ 116 132	A ₁₁ 14 20	

I.

Counter clockwise rotation

Ports

Designation	Ports for	Standard	Size ²⁾	Peak pressure [bar] ³⁾	State
X ₁	Pilot pressure	DIN 3852	M14x1.5; 12 deep	100	0
X ₂	External control pressure	DIN 3852 DIN 3852	M14x1.5; 12 deep (NG250 a. 355) M18x1.5; 12 deep (NG500)	400 400	O ⁴⁾ O ⁴⁾
М	Measuring pressure on control piston	DIN 3852	M14x1.5; 12 deep	400	Х

²⁾ For the max. tightening torques the general information on page 52 must be observed

³⁾ Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.

⁴⁾ If no external control pressure is connected, port X₂ must be plugged

O = Must be connected (closed on delivery)

X = Plugged (in normal operation)

HD.b Hydraulic control, pilot pressure dependent

Initial position: Vg min in pressureless condition

The hydraulic pilot pressure dependent control enables an infinite adjustment of the pump displacement in accordance with the applied pilot pressure signal. The displacement setting is proportional to the pilot pressure in port X_1 .

A minimum control pressure of 40 bar is required. The necessary control fluid is taken from the pump outlet pressure side.

An external control pressure is not required when the operating pressure > 40 bar and $V_{g\,min}$ > 0. In this case the port X_2 must be plugged prior to commissioning. Otherwise an external control pressure of at least 40 bar must be connected to port X_2 .

Maximum permissible pilot pressure p_{St} _____ 100 bar

The control begin is adjustable.

Control begin (bar), please state in clear text when ordering.

Note

 The beginning of control and the HD control characteristic are influenced by housing pressure. An increase in housing pressure results in a higher beginning of control (see page 7) and thus a parallel shift of the control characteristic.

Integrated pressure control is standard. Description see page 37

Note

The spring return feature in the control unit is not a safety device

The spool valve inside the control unit can get stuck in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the axial piston unit can no longer supply the flow specified by the operator.

Check whether your application requires that remedial measures be taken on your machine in order to bring the driven consumer into a safe position (e.g. immediate stop).

Schematic

Hydraulic control, pilot pressure dependent with integrated pressure control

Sub assemblies

- 1 Pressure control
- 6 HD-pilot valve

Ports for

- X₁ Pilot pressure
- X₂ External control pressure
- M Measuring pressure on control piston

Dimensions see page 36

HD.b Hydraulic control, pilot pressure dependent

Characteristics

Dimensions HD.D

General dimensions see page 10 to 17

Clockwise rotation

Counter clockwise rotation

Ports

Designation	Port for	Standard	Size ²⁾	Peak pressure [bar] ³⁾	State
X ₁	Pilot pressure	DIN 3852	M14x1.5; 12 deep	100	0
X ₂	External control pressure	DIN 3852	M14x1.5; 12 deep (NG250 a. 355)	400	O ⁴⁾
		DIN 3852	M18x1.5; 12 deep (NG500)	400	O ⁴⁾
М	Measuring pressure on control piston	DIN 3852	M14x1.5; 12 deep	400	Х

²⁾ For the max. tightening torques the general information on page 52 must be observed

³⁾ Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.

 $^{\rm 4)}$ If no external control pressure is connected, port X_2 must be plugged

O = Must be connected (closed on delivery)

X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

NG	A ₁	A ₂	A ₃	A_4	A_5
250	385	161	275	49	210
355	432	181	300	54	234
500	492	200	325	61.5	258
NG	A ₆	A ₇	A ₈		
250	248	248	276		
355	278	275	315		
500	322	300	359		
NG	A ₁₂	A ₁₃	A ₁₄		
250	377	116	14		
355	425	132	20		
500	483	144	20		

HD.D with integrated pressure control

Initial position: Vg min in pressureless condition

The pressure control overrides the HD-function i.e. below the setting of the pressure control the HD-function can be operated

It protects the pump against excessive pressure and subsequential damage.

The pressure control valve is integrated into the port plate and can be set externally.

Upon reaching the set pressure control level the pump will swivel towards a lower displacement.

Setting range of the pressure control _____ 50 to 350 bar Standard setting at 350 bar.

If a different setting is required, please state in clear text.

A recommended main line relief valve in the system to safeguard against excessive pressure spikes must have a cracking pressure at least 20 bar above the pressure control setting.

Note

- The beginning of control and the pressure control characteristic are influenced by housing pressure. An increase in housing pressure results in a higher beginning of control (see page 7) and thus a parallel shift of the control characteristic
- Standby operation see page 6.

Characteristic

Schematic

Hydraulic control, pilot pressure dependent with integrated pressure control

Sub assemblies

- 1 Pressure control
- 6 HD-Pilot valve

Ports for

- X₁ Pilot pressure
- X₂ External control pressure
- M Measuring pressure on control piston (plugged)

Dimensions see page 39

нь.G with remotely adjustable pressure control

Initial position: $V_{g min}$ in pressureless condition

The pressure control overrides the HD function.

In order to obtain a remote adjustment of the pressure control level a separate pilot pressure relief (item 2) valve must be connected to port X_3 . This relief valve is not included in the supply of the DRG control.

Setting range of the pressure control _____50 to 350 bar

The spring force on the pressure compensator spool causes a differential pressure between pump output pressure and pressure at X_3 (as soon as the relief valve opens and the pressure control function takes place). Standard setting of this differential pressure 25 bar.

As long as the the pressure is below the set pressure of the relief valve, the pressures on both sides of the pressure compensator spool are equal and the additional spring force keeps this spool in a shifted position (Spool in equilibrium).

As soon as the set pressure of the relief valve is reached, this valve will start to open and the pilot flow will result in a differential pressure over the compensator spool, which causes this spool to shift and brings the pump to a smaller displacement $V_{g \min}$.

Upon reaching the set pressure control level (set pressure at pilot relief valve plus differential pressure at pressure control compensator) the pump will go over to the pressure control mode.

The differential pressure at the pressure compensator spool (item 1) is normally set at 25 bar, which results in a pilot flow at X_3 of approx. 2 L/min.

In case another setting (range 14 to 50 bar) is required, please state in clear text when ordering.

As a seperate pilot relief valve we recommend:

DBD 6 (hydraulic) see RE 25402

DBETR-SO 437 with dampened spool (electric) see RE 29166

The max. line lenght should not exceed 2 m.

Note

- The beginning of control and the pressure control characteristic are influenced by housing pressure. An increase in housing pressure results in a higher beginning of control (see page 7) and thus a parallel shift of the control characteristic.
- Standby operation see page 6.

Characteristic

Schematic

Hydraulic control, pilot pressure dependent with integrated pressure control

Sub assemblies

- 1 Integrated pressure control compensator
- 2 Separate pressure relief valve (not in scope of supply)
- 6 HD-pilot valve

Ports for

- X₁ Pilot pressure
- X₂ External control pressure
- X₃ Separate pressure relief valve (for HDG)
- M Measuring of pressure on control piston (plugged)

Dimensions see page 39

Dimensions HD.D and HD.G

General dimensions see page 10 to 17

Clockwise rotation

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

NG	A ₁	A ₂	A ₃	A ₄	A ₅
250	385	161	275	49	210
355	432	181	300	54	234
500	492	200	325	61.5	258
NG	A ₆	A ₇	A ₈	A ₉	A ₁₀
250	248	248	276	380	112
355	278	275	315	425	131
500	322	300	359	483	142
NG	A ₁₁	A ₁₂	A ₁₃	A ₁₄	
250	74	377	116	14	
355	82	425	132	20	
500	96	483	144	20	

Counter clockwise rotation

Ports

Designation	Port for	Standard	Size ²⁾	Peak pressure [bar] ³⁾	State
X ₁	Pilot pressure	DIN 3852	M14x1.5; 12 deep	100	0
X ₂	External control pressure	DIN 3852	M14x1.5; 12 deep (NG250 a. 355)	400	O ⁴⁾
		DIN 3852	M18x1.5; 12 deep (NG500)	400	O ⁴⁾
X₃ (for HDG)	Separate pressure relief valve	DIN 3852	M14x1.5; 12 deep	400	0
М	Measuring of pressure on control piston	DIN 3852	M14x1.5; 12 deep	400	Х

²⁾ For the max. tightening torques the general information on page 52 must be observed

³⁾ Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.

⁴⁾ If no external control pressure is connected, port X₂ must be plugged

O = Must be connected (closed on delivery)

X = Plugged (in normal operation)

EP.D Electric control with proportional valve

Initial position: $V_{g min}$ in pressureless condition

The electro-hydraulic control with proportional valve enables a stepless adjustment of the pump displacement dependent on an electric current signal.

The displacement is proportional to the current signal to the solenoid of a proportional pressure reducing valve DRE4K (see RE 29181), i.e. an increasing current signal results in an increasing displacement.

A minimum control pressure of 40 bar is required. The necessary control fluid is taken from the pump outlet pressure side.

An external control pressure is not required when the operating pressure > 40 bar and $V_{g\,min}$ > 0. In this case the port X_2 must be plugged prior to commissioning. Otherwise an external control pressure of at least 40 bar must be connected to port X_2 .

A pilot pressure of 30 bar is required at port P to actuate the proportional valve DRE4K.

Pilot pressure at port P

 Required p_{min}
 30 bar

 p_{max}
 100 bar

Important

 For operation on HF-fluids please observe the information in RE 29181

(Proportional-pressure reducing valve Type DRE4K).

- The beginning of control and the pressure control characteristic are influenced by housing pressure. An increase in housing pressure results in a higher beginning of control (see page 7) and thus a parallel shift of the control characteristic.
- Type of protection proportional valve to IP65

Note

The spring return feature in the control unit is not a safety device

The spool valve inside the control unit can get stuck in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the axial piston unit can no longer supply the flow specified by the operator.

Check whether your application requires that remedial measures be taken on your machine in order to bring the driven consumer into a safe position (e.g. immediate stop).

Technical data proportional-press. reducing valve

	EP1	EP2
Operating valtage (DC)	12V(±20%)	24V (±20%)
Control current		
Control begin at $V_{g min}$	900 mA	450 mA
Control end at $V_{g max}$	1400 mA	700 mA
Current limit	2,2 A	1,0 A
Nom. resistance (at 20°C)	2,4 Ω	12 Ω
Duty cycle	100 %	100 %
Type of protection (HIRSCHMANN) to DIN EN 60529	IP65	IP65

Various amplifiers for control of the proportional valve are available in the Rexroth program, see RE 29181.

Integrated pressure control EP.D is standard and overrides the EP function. Description see page 43.

EP.D Electric control with proportional valve

Characteristic

Schematic

Electric control with proportional pressure reducing valve

Sub assemblies

- 1 Pressure control
- 7 Pilot valve
- 8 Proportional pressure reducing valve (see RE 29181) incl. conductor box (Hirschmann plug without suppressor diode) see page 50

Ports for

- P Pilot pressure
- X₂ External control pressure
- M Measuring pressure on control piston (plugged)
- M_{St} Measuring pilot pressure (plugged)

Dimensions see page 42

Dimensions EP.D

General dimensions see page 10 to 17

Clockwise rotation

Counter clockwise rotation

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

NG	A ₁	A ₂	A ₃	A_4	A ₅	A ₆
250	385	161	275	115	248	276
355	432	181	300	116	275	315
500	492	200	325	123	300	359
NG	A ₇	A ₈	A ₉	A ₁₀	A ₁₁	A ₁₂
250	238	241	36	112	380	74
355	268	286	36	131	425	82
500	294	328	43	142	483	96
NG	A ₁₃	A ₁₄	A ₁₅	A ₁₆	A ₁₇	A ₁₈
250	377	116	14	248	210	49
355	425	132	20	278	234	54
500	483	144	20	322	258	61.5

¹⁾ Cable connection M16x1.5 for cable diameter 4.5 to 10 mm Plug description and dimensions see page 50

Ports

Designation	Port for	Standard	Size ²⁾	Peak pressure [bar] ³⁾	State
Р	Pilot pressure for proportional valve	DIN 3852	M14x1.5; 12 deep	100	0
X ₂	External control pressure	DIN 3852	M14x1.5; 12 deep (NG250 a. 355)	400	O ⁴⁾
		DIN 3852	M18x1.5; 12 deep (NG500)	400	O ⁴⁾
М	Measuring pressure on control piston	DIN 3852	M14x1.5; 12 deep	400	Х
M _{St}	Measuring pilot pressure	DIN 3852	M14x1.5; 12 deep	100	Х

²⁾ For the max. tightening torques the general information on page 52 must be observed

³⁾ Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.

 $^{\scriptscriptstyle 4)}$ If no external control pressure is connected, port X_2 must be plugged

O = Must be connected (closed on delivery)

X = Plugged (in normal operation)

EP.D with integrated pressure control

Initial position: $V_{g min}$ in pressureless condition

The pressure control overrides the EP-function i.e. below the setting of the pressure control the EP-function can be operated.

It protects the pump against excessive pressure and subsequential damage.

The pressure control valve is integrated into the port plate and can be set externally.

Upon reaching the set pressure control level the pump will swivel towards a lower displacement.

Setting range of the pressure control_____ 50 to 350 bar Standard setting at 350 bar.

If a different setting is required, please state in clear text.

A recommended main line relief valve in the system to safeguard against excessive pressure spikes must have a cracking pressure at least 20 bar above the pressure control setting.

Note

- The beginning of control and the pressure control characteristic are influenced by housing pressure. An increase in housing pressure results in a higher beginning of control (see page 7) and thus a parallel shift of the control characteristic
- Standby operation see page 6.

Characteristic

Schematic

Electric control with proportional pressure reducing valve

Sub assemblies

- 1 Pressure control
- 7 Pilot valve
- 8 Proportional pressure reducing valve incl. conductor box (Hirschmann plug without suppressor diode) see page 46

Ports for

- P Pilot pressure
- X₂ External control pressure
- M Measuring pressure on control piston (plugged)
- M_{St} Measuring pilot pressure (plugged)

Dimensions see page 45

EP.G with remotely adjustable pressure control

Initial position: Vg min in pressureless condition

The pressure control overrides the EP- function.

In order to obtain a remote adjustment of the pressure control level a separate pilot pressure relief (item 2) valve must be connected to port X_3 . This relief valve must be ordered separately to the DRG control.

Setting range of the pressure control _____50 to 350 bar

The spring force on the pressure compensator spool causes a differential pressure between pump output pressure and pressure at X_3 (as soon as the relief valve opens and the pressure control function takes place). Standard setting of this differential pressure 25 bar.

As long as the the pressure is below the set pressure of the relief valve, the pressures on both sides of the pressure compensator spool are equal and the additional spring force keeps this spool in a shifted position (Spool in equilibrium).

As soon as the set pressure of the relief valve is reached, this valve will start to open and the pilot flow will result in a differential pressure over the compensator spool, which causes this spool to shift and brings the pump to a smaller displacement $V_{q \min}$.

Upon reaching the set pressure control level (set pressure at pilot relief valve plus differential pressure at pressure control compensator) the pump will go over to the pressure control mode.

The differential pressure at the pressure compensator spool (item 1) is normally set at 25 bar, which results in a pilot flow at X_3 of approx. 2 L/min.

In case another setting (range 14 to 50 bar) is required, please state in clear text when ordering.

As a seperate pilot relief valve we recommend:

DBD 6 (hydraulic) see RE 25402

DBETR-SO 437 with dampened spool (electric) see RE 29166

The max. line lenght should not exceed 2 m.

Note

 The beginning of control and the pressure control characteristic are influenced by housing pressure. An increase in housing pressure results in a higher beginning of control (see page 7) and thus a parallel shift of the control characteristic.

- Standby operation see page 6.

Characteristic

Schematic

Electric control with proportional pressure reducing valve and remotely adjustable pressure control

Sub assemblies

- 1 Integrated pressure control compensator
- 2 Separate pressure relief valve (not in scope of supply)
- 7 Pilot valve
- 8 Proportional pressure reducing valve

Ports for

- P Pilot pressure for proportional valve
- X₂ External control pressure
- X₃ Separate pressure relief valve (EPG)
- M Measuring pressure on control piston (plugged)
- M_{St} Measuring pilot pressure (plugged)

Dimensions see page 45

Dimensions EP.D and EP.G

General dimensions see page 10 to 17

Clockwise rotation

Counter clockwise rotation

Ports

Designation	Port for	Standard	Size ²⁾	Peak pressure [bar] ³⁾	State
Р	Pilot pressure for proportional valve	DIN 3852	M14x1.5; 12 deep	100	0
X ₂	External control pressure	DIN 3852	M14x1.5; 12 deep (NG250 a. 355)	400	0
		DIN 3852	M18x1.5; 12 deep (NG500)	400	0
X ₃ (for EPG)	Separate pressure relief valve	DIN 3852	M14x1.5; 12 deep	400	0
М	Measuring pressure on control piston	DIN 3852	M14x1.5; 12 deep	400	Х
M _{St}	Measuring pilot pressure	DIN 3852	M14x1.5; 12 deep	100	Х

²⁾ For the max. tightening torques the general information on page 52 must be observed

³⁾ Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.

⁴⁾ If no external control pressure is connected, port X₂ must be plugged

O = Must be connected (closed on delivery)

X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

NG	A 1	A_2	A ₃	A_4	A ₅	A_6
250	385	161	275	115	248	276
355	432	181	300	116	275	315
500	492	200	325	123	300	359
	_					
NG	A ₇	A ₈	A۹	A ₁₀	A ₁₁	A ₁₂
250	238	241	36	112	380	74
355	268	286	36	131	425	82
500	294	328	43	142	483	96
NG	A ₁₃	A ₁₄	A ₁₅	A ₁₆	A ₁₇	A ₁₈
250	377	116	14	248	210	49
355	425	132	20	278	234	54
500	483	144	20	322	258	61.5

¹⁾ Cable connection M16x1.5 for cable diameter 4.5 to 10 mm Plug description and dimensions see page 50

Visual swivel angle indicator

The swivel angle is indicated by a pin at the side of the port plate (the cap nut must be removed).

The protruding lenght of the pin varies in accordance with the position of the lens plate.

The pump is at zero if the pin is flush with the port plate.

The lenght of the pin is approx. 8 mm when swivelled to max. angle $V_{\rm g\,max}$

Schematic example LRD – intial position Vg max

Dimensions

General dimensions see page 10 to 17

NG	A ₁	A ₃	A_4	A ₅ *
250	136.5	73	238	11
355	159.5	84	266	11
500	172.5	89	309	11

* Dimension to remove the cap nut

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Electric swivel angle indicator

In this case the pump swivel angle is indicated via an inductive position transducer.

It converts the displacement of the control device into an electrical signal This signal can be used to feed the value of swivel angle to an amplifier card for example.

Inductive transducer Type IW9 - 03 - 01

Schematic example EPD - initial position V_{g min}

Dimensions

General dimensions see page10 to 17

NG	A ₂
250	182
355	205
500	218

I

Sub assemblies

9 Inductive transducer IW9-03-01 with conductor box (mating plug) Hirschmann plug without suppressore diode, with cable connection M16x1.5 for cable diameter 4.5 to 10 mm Plug description and dimensions see page 50

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Installation instructions standard version

General

During commissioning and operation the axial piston unit must be full with fluid at all times and must be deaerated. This is also important after prolonged periods of standstill since the system can empty itself via the hydraulic lines

The leakage fluid in the housing must be drained to tank via the highest positioned case drain port.

Under all operating conditions the case drain line and the suction line inside the reservoir must be below the minimum fluid level

The minimum inlet pressure at port S may not fall below 0.8 bar absolute.

Installation position

See examples below. Further installation positions are possible, please consult us.

Mounting below the reservoir (standard)

Mounting above the reservoir

Pump below the minimum reservoir fluid level Recommemded installation position: 1 and 2

Installation position	Deaerate	Filling	Installation position	Deaerate	Filling
1	_	R ₁ (L ₁)	4	-	R ₁ (L ₁)
2	_	R ₂ (L ₁)	5	-	R ₂ (L ₁)
3	U	R ₂ (L ₁)			

Installation instructions High-Speed-version

General

During commissioning and operation the axial piston unit must be full with fluid at all times and must be deaerated. This is also important after prolonged periods of standstill since the system can empty itself via the hydraulic lines

The leakage chamber and suction chamber are connected inside the pump housing. A case drain line to tank is not necessary.

The suction line inside the reservoir must end up below the minimum fluid level under all operating conditions. The minimum inlet pressure at port S may not fall below 0.8 bar absolute.

Installation position

See examples below. Further installation positions are possible, please consult us

Mounting below the reservoir (standard)

Pump below the minimum reservoir fluid level

Recommended installation position: 1 and 2.

Installation position	Deaerate	Filling	
1	R ₁	S (L ₁)	
2	R ₂	S (L ₁)	
3	U	S (L ₁)	

Plug

On EP-control and electric swivel angle indicator E

HIRSCHMANN DIN EN 175 301-803-A /ISO 4400

Without bi-directional suppressor diode

Type of protection to DIN/EN 60529: IP65

The sealing ring in the cable connection is suitable for a cable diameter of 4.5 mm to 10 mm.

The HIRSCHMANN-plug is included in the delivery of the pump.

Bosch Rexroth AG 51/52

Notes

Safety information

- The pump A7VO was designed for operation in open loop circuits
- Systems design, installation and commissioning requires trained technicians or tradesmen.
- All hydraulic ports can only be used for the fastening of hydraulic service lines.
- During and shortly after operation of a pump the housing and especially a solenoid can be extremely hot, avoid being burned; take suitable safety measures (wear protective clothing).
- Dependent on the operating conditions of the axial piston pump (operating pressure, fluid temperature) deviations in the performance curves can occur.
- Pressure ports:

All materials and port threads are selected and designed in such a manner, that they can withstand the peak pressures. The machine and system manufacturer must ensure, that all connecting elements and hydraulic lines are suitable for the actual operating conditions (pressures, flow, fluid, temperature) in accordance with the necessary safety factors.

- All given data and information must be adhered to ..
- The product has not been released as a component in the safety concept of a total machine system acc. to DIN EN ISO 13849.
- The following tightening torques are valid:
 - Female threads in the axial piston unit: the maximum permissible tightening torques M_{GMax} are maximum values for the female threads in the pump casting and may not be exceeded. For values see table below.
 - Fittings:

please comply with the manufacturer's information regarding the max. permissible tightening torques for the used fittings.

- Fastening bolts:

for fastening bolts to DIN 13 we recommend to check the permissible tightening torques in each individual case to VDI 2230.

- Plugs:

for the metal plugs, supplied with the axial piston unit the following min. required tightening torques Mv apply (see table)

Port thread size		Max. perm. tightening torque in female threads M _{G max}	Required tightening torque of plugs or fittings M_{ν}	Across the flats in Allan screws
M14x1.5	DIN 3852	80 Nm	35 Nm	6 mm
M18x1.5	DIN 3852	140 Nm	60 Nm	8 mm
M22x1.5	DIN 3852	210 Nm	80 Nm	10 mm
M33x2	DIN 3852	540 Nm	225 Nm	17 mm

Bosch Rexroth AG Hydraulics Axial Piston Units An den Kelterwiesen 14 72160 Horb a.N., Germany Telefon +49 (0) 74 51 - 92 0 Telefax +49 (0) 74 51 - 82 21 info.brm-ak@boschrexroth.de www.boschrexroth.com/axial-piston-pumps © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.