Rexroth **Bosch Group**

Axial Piston Variable Double Pump A8VO

RE 93010/03.09 1/40 Replaces: 11.07

Data sheet

Series 61 / 63 Sizes 55...200 Nominal pressure 350 bar Peak pressure 400 bar for open circuit

Contents

Ordering Code / Standard Program	2
Technical Data	4
LA0, LA1 - Individual Power Controller	7
EP - Electric Control with Proportional Solenoid	11
Unit Dimensions, Size 55	12
Unit Dimensions, Size 80	16
Unit Dimensions, Size 107	20
Unit Dimensions, Size 140	24
Unit Dimensions, Size 200	28
Power Take-off Dimensions	32
Overview of Attachments	34
Power Take-off, Auxiliary Pump and Valves	35
Connector for Solenoids	37
Installation Notes	38
General Notes	40

Features

- Variable double pump with two axial tapered piston rotary groups of bent-axis design for hydrostatic drives in open circuits
- The flow is proportional to the input speed and to the displacement, and is infinitely variable from $q_{V\,\text{max}}$ to $q_{V\,\text{min}}=0$
- The pump is suitable for direct mounting on the flywheel case in diesel engines
- One common suction port for auxiliary pump and both circuits
- A wide range of control instruments is available for different control and regulating functions
- Individual power controller
- Integrated auxiliary pump with pressure-relief valve, optionally with additional pressure-reduction valve
- Power take-off for mounting axial piston and gear pumps
- Excellent power to weight ratio
- Long service life

Ordering Code / Standard Program

A8V	0			1		R	1	-	Ν	Z		0	5			
01	02	03	04		05	06	07		08	09	1(D 1	1	12 13	14	15
	iston u															·
01 Bent-a	xis desi	gn, vari	able													A8V
Operat	ion mo	de														
			l constr	uction),	for ope	n circu	ts									0
Size 03 ≈ Disp	lacomor	5+ V	in cm ³	ner rot	ary grou						55	80	107	140	200	1
	ginax 71 J G I]						
	l device										55	80	107	140	200	
			roller wi									r			1	
			ke limite sure sup		ve cont	rol and					•	0	•	0	0	LAOH
	load se		sure sup	piy							_	_	0	0	0	LAOS
			er coup	lina							•	•		0	-	LAOK
	and load										_	0	0	•	0	LAOK
			troke lin	niter, ne	aative o	ontrol					0	0	0	0	0	LAOKH
			limiter, p		<u> </u>		rnal pilo	ot pressi	ire supr	olv	•	•		•	•	LAOK
			limiter, r							-	0	0	•	•	•	LAOKH
	•		roller wi	-				•		10.0	9		-		•	
			ke limite	· ·							•					
			sure sup								•	•	•	•	•	LA1H
with	load se	ensing									-	_	•	•	•	LA1S
with	n hydrau	lic pow	er coup	ling							0	0	0	0	-	LA1
-	and load	d sensir	ng								-	0	•	•	•	LA1K
-	and hyd	raulic s	troke lin	niter, ne	gative c	ontrol					•	•	•	•	•	LA1KH
_	hydraulio	c stroke	limiter,	positive	control	and ext	ernal p	ilot pres	sure su	pply	•	•	•	•	•	LA1KF
	hydraulio	stroke	limiter, r	negative	control	and ext	ernal pi	ot press	ure sup	ply	0	0	0	0	0	LA1KF
Electri	c contro	l with p	prop. sol	enoid (positive	contro)	U = 24	V		-	-		•	-	EP2
Series											55	80	107	140	200	
Series	6; Inde	x 1, 3									•	_	-	-		61
05	,	,									-	•	•		•	63
										I		1		I	1	
	on of ro		d: clock										-			
lo viewec		ian enc		wise												R
Gear r	atio (n _{ir}	_{nput} / n _{re}	otary group	os)												
07 i = 1																1
Seals																
	nitrile-ca	aoutcho	ouc), sha	aft seal	ring in F	KM (flu	ior-cao	utchouc)							N
																•
Shaft e	e nd d shaft,		80										-		_	z
Spline	u snan,	0110 04	-00													<u> </u>
Mounti	ng flan	ge									55	80	107	140	200 ¹)	
			onformi								•	●	•	•	-	G
` ∣ of inte	rnal com	bustio	n engine	e (hole d	diamete	r for fixi	ng ø11	mm)			-	-	-	-	•	N

¹) Hole diam. 11 mm for new projects only (previous types with short code G and hole diam. 14 mm)

Ordering Code / Standard Program

A8V	0			/		R	1	-	Ν	Ζ		05				
01	02	03	04		05	06	07		08	09	10	11	12	13	14	15

	Service line port										
11	SAE flange ports A1 and	d A2 at side,	opposit	e (metric fixi	ng thread)						05
	SAE flange port S at rea	ar (metric fixii	ng threa	d)							05
	Auxiliary pump 55 80 107										
	without integrated auxiliary pump without power take-off (PTO)						•		•	•	K00
	with power take-off (PTO)					•	•		•	•	К
	with integrated auxiliary pump, without power take-off (PTO)					•	•	•	•		F00
				with power take-off (PTO)			•	•	•	•	F
	Power take-off ¹) ²)										
12	Flange SAE J744 ³)	Hub for	splined s	shaft ⁴)		55	80	107	140	200	
-	82-2 (A)	5/8in	9T	16/32DP	(A)			•	•	•	01
	101-2 (B)	7/8in	13T	16/32DP	(B)	•	•		•	•	02
		1in	15T	16/32DP	(B-B)	•	•	•	•		04
	127-2 (C)	1 1/4in	14T	12/24DP	(C)	0	•	•	•	•	07
	152-4 (D)	1 1/4in	14T	12/24DP	(C)	-	-	-	0	•	86
		1 3/4in	13T	8/16DP	(D)	-	-	-	•	•	17
	Valves								K	F	
	Without valves (only for versions without auxiliary pump, K)								•	-	0
13	With pressure-relief valv	e (only for ve	ersions v	vith auxiliary	pump, F)				_		1
	With pressure-relief and pressure-reduction valve, (only for versions with auxiliary pump, F). U = 24V -							-	•	4	

	Connector for solenoids (only for EP)	55	80	107	140	200	
14	4 DEUTSCH connector molded, 2-pin, without suppressor diode	-	-	•	•	-	Р

Standard / special version

	Standard version	(without code)	
15		combined with attachment part or attachment pump	-K
15	Special version		-S
		combined with attachment part or attachment pump	-SK

¹) Note installation conditions (see pages 32/33)

2) Other PTOs on request

³) 2 = 2-hole; 4 = 4-hole

4) Hub for splined shaft according to ANSI B92.1a-1976 (splined shafts assigned according to SAE J744, see pages 32/33)

 \bullet = available $\mathbf{O} =$ on request - = not available

Technical Data

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90223 (HF hydraulic fluids) for detailed information regarding the choice of hydraulic fluids and application conditions.

The A8VO variable double pump is not suitable for operation with HFA. If HFB, HFC and HFD or environmentally acceptable hydraulic fluids are being used, the limitations regarding technical data and seals mentioned in RE 90221 and RE 90223 must be observed.

When ordering, please indicate the used hydraulic fluid.

Operating viscosity range

We recommend that a viscosity (at operating temperature) for optimum efficiency and service life purposes of

 v_{opt} = optimum operating viscosity 16 to 36 mm²/s

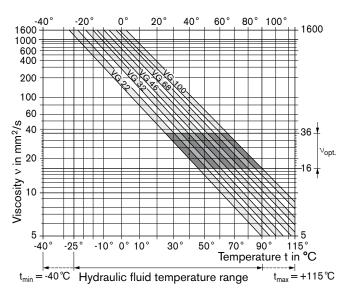
be chosen, taken the tank temperature (open circuits) into account.

Limits of viscosity range

The following values apply in extreme cases:

 $v_{min} = 5 \text{ mm}^2/\text{s}$ short-term (t < 3 min) at max. perm. temperature of $t_{max} = +115^{\circ}\text{C}$.

 $v_{max} = 1600 \text{ mm}^2/\text{s},$


short-term (t < 3 min) at cold start (p \leq 30 bar, n \leq 1000 rpm, t_{min} = -40°C). Only for starting up without load. Optimum operating viscosity must be reached within approx. 15 minutes.

Note that the maximum hydraulic fluid temperature of 115°C must not be exceeded locally either (e.g. in the bearing area). The temperature in the bearing area is – depending on pressure and speed – up to 12 K higher than the average case drain temperature.

Special measures are necessary in the temperature range from -40°C to -25°C (cold start phase); please contact us.

For detailed information about use at low temperatures, see RE 90300-03-B.

Selection diagram

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature, in an open circuit the tank temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt}) - the shaded area of the selection diagram. We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X°C, an operating temperature of 60°C is set. In the optimum viscosity range ($v_{opt.}$, shaded area) this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note:

The case drain temperature, which is affected by pressure and speed, is always higher than the tank temperature. At no point in the system may the temperature be higher than 115°C.

If the above conditions cannot be maintained due to extreme operating parameters, please contact us.

Filtration

The finer the filtration, the higher the cleanliness level of the hydraulic fluid and the longer the service life of the axial piston unit.

To ensure functional reliability of the axial piston unit, the hydraulic fluid must have a claenliness level of at least

20/18/15 according to ISO 4406.

At very high hydraulic fluid temperatures (90°C to max. 115°C) at least cleanliness level

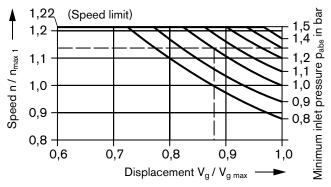
19/17/14 according to ISO 4406 is required.

If the above classes cannot be observed, please contact us.

Technical Data

Operating pressure range

Input


Pressure on port S

The minimum permissible inlet pressure depends on the input speed. The following limit values must not be exceeded or undercut.

The max. pressure $p_{abs max}$ is also dependent on the speed (see following diagram).

Minimum permissible inlet pressure at suction port S with increased speed

In order to avoid damage to the pump (cavitation), a minimum inlet pressure at the suction port must be assured. The minimum inlet pressure is depends on the speed and the displacement of the variable pump.

Example:

Given: Size 80, input speed 2560 rpm

Required: Necessary minimum inlet pressure p_{abs} at suction port S

Solution: Speed ratio $\frac{n}{n_{max 1}} = \frac{2500}{2240} = 1.14$

results in a minimum inlet pressure of $p_{abs} = 1.3$ bar at full swivel angle (V_{g max}).

If a free inlet flow can only be achieved at e.g. $p_{abs} = 1$ bar, the displacement must be reduced to 0.88 • $V_{g max}$.

Note:

- Max. speed n_{max} (speed limit, see page 6)
- Min. and max. permissible pressure at port S.
- Permissible values for the shaft seal ring

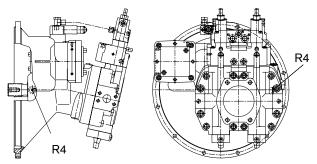
Output

Pressure on port A_1 or A_2 (pressure data according to DIN 24312)	
Nominal pressure p _N	350 bar
Peak pressure p _{max}	400 bar
Nominal pressure:Max. design pressure at which is ensured.	n fatigue strength

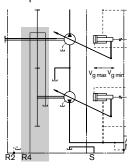
Peak pressure: Max. operating pressure which is permissible for short-term (t < 1 s).

Case drain fluid

The case drain chamber is connected to the suction and gear chambers. A case drain line to the tank is not required. Note the special feature of size 200 for flushing fluid.


External flushing fluid connection

All A8VO variable double pumps in **size 200 always** require an external flushing fluid connection from the R4 port to the tank, to ensure cooling and lubrication of the bearing sets.


This line should have an internal diameter \geq 15 mm.

Note:

The tank level must be higher than the position of the R4 port (see page 37).

Circuit diagram with R4 port

Temperature range of shaft seal ring

The FKM shaft seal ring is permissible for case drain temperatures of -40°C to +115°C.

Auxiliary pump

Max. permissible pressure pmax ____

40 bar

The pressure-relief valve installed to protect the integrated auxiliary pump has a fixed setting of 30 bar.

Input

Via flexible coupling.

Technical Data

Table of values (theoretical values, without efficiencies and tolerances; values rounded)

	. ,							
Size				55	80	107	140	200
Displacement		V _{g max}	cm ³	2 x 54.8	2 x 80	2 x 107	2 x 140	2 x 200
		Vg min	cm ³	0	0	0	0	0
Gear ratio i = n _{ii}	_{nput} /n _{rotary groups}			1.0	1.0	1.0	1.0	1.0
Input speed	at V _{g max} 1)	n _{max 1}	rpm	2500	2240	2150	2100	1950
	at $V_{g \leq} V_{g \max}^2$)	n _{max}	rpm	3000	2750	2450	2450	2250
Flow	at n_{max} and $V_{g max}$	q _{v max}	L/min	2 x 137	2 x 179	2 x 230	2 x 294	2 x 390
Power								
at n _{max} , V _{gmax}	, and ∆p=350 bar	P _{max}	kW	160	209	268	294 ³)	325 ³)
Input torque								
at $V_{g max}$ and	∆p = 350 bar	T _{max}	Nm	611	891	1192	1337 ³)	1592 ³)
Rotary stiffness	(single rotary group) ⁵)							
V _{g max} to 0,5•	c _{TW}	Nm/rad	11213	17985	25565	41408	39505	
0,5•V _{g max} to 0 _(interpolated)		c _{TW}	Nm/rad	41442	67666	89381	146677	156876
Moment of inert	ia for rotary group							
with power ta without attach		\mathbf{J}_{TW}	kgm ²	0.0161	0.0209	0.0345	0.0581	0.0849
without powe	r take-off (PTO)	J _{TW}	kgm²	0.0126	0.0173	0.0288	0.0500	0.0750
Angular acceleration	ation (single rotary group) ⁵)	α	rad/s ²	25800	21800	17100	7500	11000
Mass approx.		m	kg	82	90	116	146	180
Variation: with	integrated auxiliary pump, l	F00, F ⁴)						
Displacement w	vith integrated auxiliary pump	V _{g max}	cm ³	8.6	8.6	8.6 (10.7) ⁴)	10.7	11 (19) ⁴)
Effective displace	cement	V _{g max/eff}	cm ³	9.7	9.7	11 (13.7)	12.7	13.6 (23.6
Gear ratio i = n _{ii}	_{nput} /n _{aux. pump}			0.887	0.887	0.780	0.843	0.804
Variation: with	power take-offs, K, F.							
Max. torque at F		T _{max}	Nm	250	350	380	450	650
Gear ratio i = n _{ii}				1.0	1.0	1.0	1.0	0.804
•	P			1				

¹) The values shown are valid for absolute pressure (p_{abs}) of 1 bar at suction port S and for operation with mineral fluids with a specific mass of 0.88kg/L.

²) The values shown are valid for $V_g \leq V_{g max}$ or for an increase in the inlet pressure p_{abs} at the suction port S (see page 5).

³) Observe max. permissible torque!

4) (...) = Available on request!

⁵) Caution: Exceeding the permissible limit values may result in a loss of function, a reduction in service life or in the destruction of the axial piston unit.

> Other permissible limit values with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible startup angular acceleration (lower than the maximum angular acceleration) can be found in data sheet RE 90261.

Calculation of nominal size

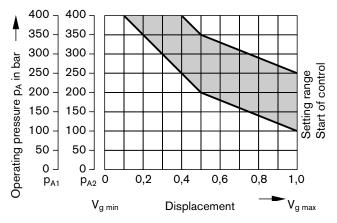
Flow

Power

Flow
$$q_v = \frac{V_g \bullet n \bullet \eta_v}{1000}$$
 in L/min $V_g = Displacement per revolution in cm^3$
 $\Delta p = Differential pressure in bar$
 $N = Speed in rpm$
 $\eta_v = Volumetric efficiency$
 $\eta_{mh} = Mechanical-hydraulic efficiency$
 $\eta_t = Overall efficiency (\eta_t = \eta_v \bullet \eta_{mh})$
Power $P = \frac{2\pi \bullet T \bullet n}{60\ 000} = \frac{q_V \bullet \Delta p}{600 \bullet \eta_t}$ in kW

On the variable double pump with individual power controller LA0/LA1, the two rotary groups are not mechanically coupled, i.e. each rotary group is fitted with a separate power controller.

The power controller controls the displacement of the pump depending on the operating pressure so that a defined input power is not exceeded.


The power setting is adjusted individually for each control and can be different; each pump can be set to 100% input power.

The hyperbolic power characteristic is approximated using two measuring springs. The operating pressure acts on the measuring surfaces of a differential piston against the measuring springs and an externally adjustable spring force, which determines the power setting.

If the sum of the hydraulic forces exceeds the spring forces, control fluid is supplied to the control piston, which swivels the pump back to reduce the flow.

When not under pressure, the pump is swiveled back to its initial position at $V_{g max}$ by a return spring.

Characteristic: LA0; LA1

The hydraulic output power (characteristic) is influenced by the efficiency of the double pump.

Please state in clear text when ordering:

- Application: e.g. excavator
- Input power P in kW
- Input speed n in rpm
- Max. flow q_{V max} in L/min
- Max. operating pressure (primary pressure valve setting)

After clarifying the details, a power diagram can be created by our computer.

LA0

Individual power controller without power override

LA1

Individual power controller with power override by pilot pressure

An external pilot pressure is applied to the third measuring surface of the differential piston (port X_3), thus enabling the set power to be reduced (negative power override).

The mechanically set basic power can be varied using different pilot pressures. This means that different power settings are possible.

If the pilot pressure signal is variably controlled by a loadlimiting control, the sum of the hydraulic powers is equal to the input power. The pilot pressure for the power override is generated by an external control element or by the mounted pressure-reduction valve (see page 36).

The electric signal for controlling the pressure-reduction valve must be generated by an external electronic controller. The BODAS controllers RC (RE 95 200) in conjunction with the LLC software (see RE 95 310) are available for this purpose (further information on the Internet at

www.boschrexroth.com/mobile-electronics):

BODAS controller RC

Series 20	RE	95200
Series 21	RE	95201
Series 22	RE	95202
Series 30	RE	95203

Note:

If there is no power override, port $X_{\rm 3}$ to the tank should be depressurized.

LAOH; LA1H

Individual power controller with hydraulic stroke limiter

The hydraulic stroke limiter enables the displacement to be infinitely varied or limited across the entire control range of $V_{g\ max}$ to $V_{g\ min}$.

The displacement is set by the pilot pressure p_{St} applied at port X_1 (max. 40 bar).

The hydraulic stroke limiter is overridden by the power controller, i.e. below the power controller characteristic, the displacement is adjusted depending on the pilot pressure. If the set flow or the operating pressure is such that the power controller characteristic is exceeded, the power controller overrides the stroke limiter and reduces the displacement along the spring characteristic.

Note: The H1/H2/H3 characteristic curve is influenced by the design of the power controller!

LA0H1/3; LA1H1/3

Hydraulic stroke limiter (negative control)

Control range from $V_{g max}$ to $V_{g min}$.

With increasing pilot pressure the pump swivels to a smaller displacement.

Start of control (at V_{g max}) adjustable _____ from 4 - 15 bar

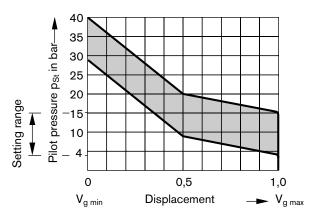
Note: The start of control depends on the power controller setting.

Please specify start of control in clear text when ordering. Initial position in depressurized state: $V_{q max}$

Note for H1:

A pressure \geq 30 bar is necessary for control. The required control fluid is taken from the high-pressure line.

When using negative control directional valves, the control pressure is supplied from the negative control system via the high-pressure line.


Note for H3:

A pressure \geq 30 bar is necessary for control. The required control pressure is taken from the high-pressure line or the external control pressure applied at port Y₃ (\geq 30 bar).

When using standard open-center directional valves, this control must be carried out with the external control pressure supply.

Characteristic: LA0H1/3; LA1H1/3

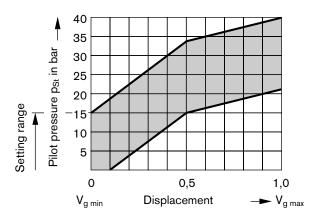
pilot pressure increase (V_{g max} – V_{g min})____ Δp = approx. 25 bar

LA0H2; LA1H2

Hydraulic stroke limiter and external pilot pressure supply (positive control)

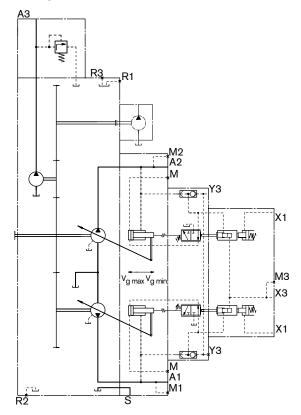
Control range from $V_{g min}$ to $V_{g max}$.

With increasing pilot pressure the pump swivels to a larger displacement.


Start of control (at $V_{g min}$) adjustable______0 to 15 bar Please specify start of control in clear text when ordering.

Initial position in depressurized state: $V_{g max}$

To control from $V_{g max}$ to $V_{g min}$ a pressure \geq 30 bar is required. The required fluid is taken from the high-pressure line or the external control pressure applied at port Y_3 (\geq 30 bar) (pilot pressure < start of control).


Characteristic: LA0/1H2

Pilot pressure increase ($V_{g min} - V_{g max}$) ____ Δp = approx. 25 bar

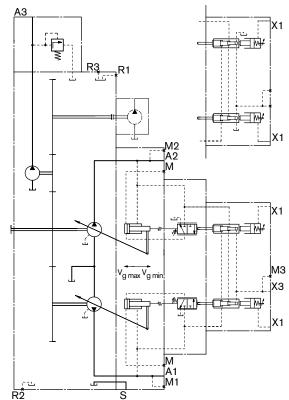
Note: If port Y_3 is present (H2 + H3), it must always be connected to an external control pressure. If there is no external control pressure supply, this connection to the tank must be depressurized.

Circuit diagram: LA1H2

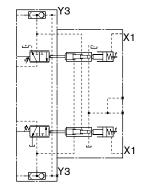
LAOK; LA1K

Individual power controller with hydraulic coupling

The hydraulic coupling of the two individual controller provides the function of a summation power control. However, the two rotary groups are coupled hydraulically, not mechanically.


The operating pressures of the two circuits each act on the differential pistons in the two individual controls, causing both rotary groups to swivel out and back together.

If one pump is working at less than 50% of the total input power, the remaining power can be transferred to the other pump, up to a limit of 100% of the total input power.


With the additional H1/H3 hydraulic stroke limiter function, each rotary group can be independently swiveled back to a smaller V_g than is currently specified by the power control.

Circuit diagram: LA1KH1

Circuit diagram module for LA0KH1

Circuit diagram module for LA0KH3

LAOS; LA1S, LA0KS, LA1KS Individual power controller with load sensing

The load-sensing controller is a flow control option that operates as a function of the load pressure to regulate the pump displacement to match the consumer flow requirement.

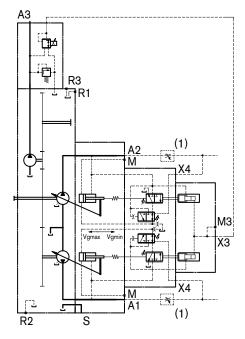
The flow depends here on the cross section of the external measuring orifice (1) fitted between the pump and the consumer. The flow is independent of the load pressure below the power characteristic and within the control range of the pump.

The measuring orifice is usually a separately arranged load sensing directional valve (control block). The position of the directional valve piston determines the opening cross section of the measuring orifice and thus the flow of the pump.

The load-sensing controller compares pressure before and after the measuring orifice and maintains the pressure drop (differential pressure Δp) and thus the flow constant.

If the differential pressure Δp on the measuring orifice increases, the pump is swiveled back towards $V_{g\,\text{min}}$ and, if the Δp decreases, the pump is swiveled out towards $V_{g\,\text{max}}$ until equilibrium in the valve is restored.

 $\Delta p_{measuring orifice} = p_{pump} - p_{consumer}$


Setting range for Δp	_ 14 - 25 bar
Standard setting	18 bar
(please state in clear text).	

The stand-by pressure in zero stroke operation (measuring orifice plugged) is slightly above the Δp setting.

In an LUDV (flow sharing) system, the pressure cut-off is integrated in the LUDV valve block.

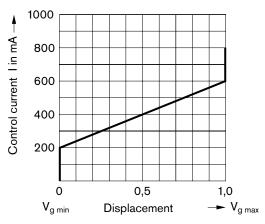
(1) The measuring orifice (control block) is not included in supply.

Circuit diagram: LA1S

EP Electric Control with Proportional Solenoids

With the electric control with proportional solenoid, the pump displacement is adjusted proportionally and steplessly to the current by means of the magnetic force.

Control from $V_{g min}$ to $V_{g max}$


With increasing control current the pump swivels to a larger displacement.

Initial position without control signal (control current): Vg min

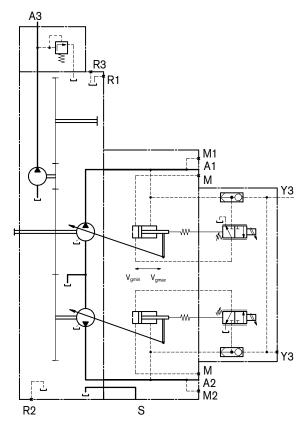
The required control pressure is taken either from the operating pressure or from the externally applied control pressure at port Y_3 .

To ensure the control even at low operating pressure < 30 bar, the port Y₃ must be supplied with an external control pressure of approx. 30 bar.

Characteristic: EP2

Note on load sensing "S" and electric control "EP": When operated at $V_{g min}$ (>5min), the hydraulic fluid in the case can become heated to an impermissible temperature. Please contact us.

Solenoid technical data	EP2
Voltage	24 V (±20%)
Control current	
Start of control at $V_g 0$	200 mA
End of control at $V_{g max}$	600 mA
Limiting current	0.77 A
Nominal resistance (at 20°C)	22.7 Ω
Dither frequency	100 Hz
Actuated time	100%
Type of protection according to DIN/EN 60529	IP67 and IP69K

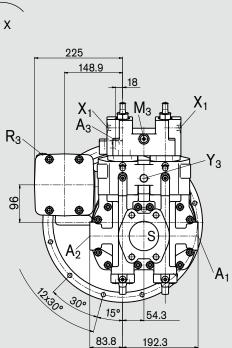

The following electronic controllers and amplifiers are available for controlling the proportional solenoids (information is also available on the Internet at www.boschrexroth.com/mobile-electronics):

- BODAS controller RC

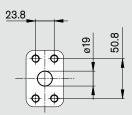
202.0000		
Series 20		RE 95200
Series 21		RE 95201
Series 22		RE 95202
Series 30		RE 95203
and applica	ation software	_

- Analog amplifier RA _____ RE 95230

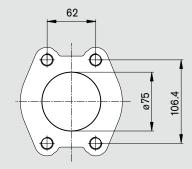
Circuit diagram: EP2



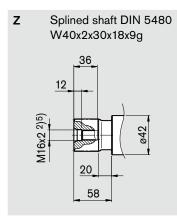
Before finalizing your design, please request a binding installation drawing. Dimensions in mm


LA0KH1/H3, LA1KH1/H3

Individual power controller with hydraulic coupling and hydraulic stroke limiter (negative control)



Detail of A₁, A₂ (2:1)



Detail of S (2:1)

1) Dimensions according to SAE J617-No. 4, for connection to flywheel case in internal combustion engine.

Shaft end

Ports

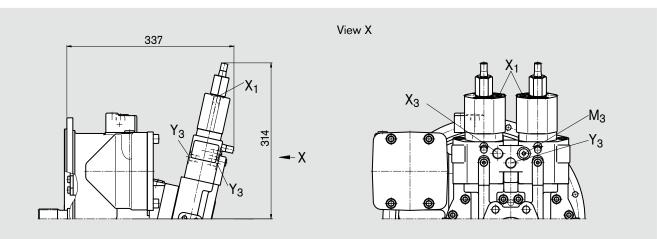
A ₁ , A ₂	Service line ports (high-pressure series)	SAE J518	3/4in	
	Fixing thread	DIN 13	M10x1.5; 17 deep ⁵)	
S	Suction port (standard series)	SAE J518	3in	
	Fixing thread	DIN 13	M16x2; 21 deep ⁵)	
A ₃	Service line port (auxiliary pump)	DIN 3852	M18x1.5; 12 deep	140 Nm ⁵)
R1, R3	Air bleed port ⁶)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
R_2	Fluid drain ⁶)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
М	Gauge port for control pressure ⁶)	DIN 3852	M12x1.5; 12 deep	50 Nm ⁵)
Мз	Gauge port for power override ³) ⁶)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
X ₁	Pilot pressure port for hydraulic stroke limiter	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
X ₃	Pilot pressure port for power override ³)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
Y ₃	External control pressure port ⁴) ⁷)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)

²) Center bore according to DIN 332 (thread according to DIN 13)

³) On the LA0 version, the port has no function

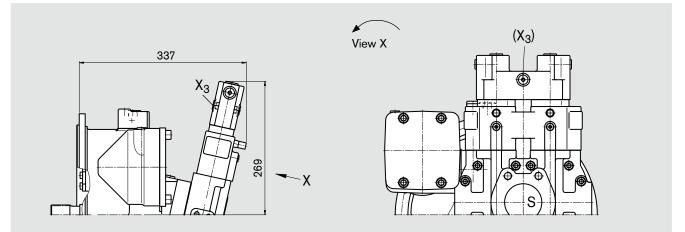
⁴) Only for versions LA...H2 and LA...H3

⁵) Please observe the general notes for the max. tightening torques on page 40.

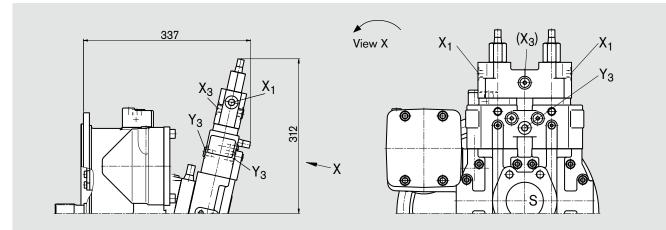

⁶) Plugged

7) 1x plugged, 1x open

Before finalizing your design, please request a binding installation drawing. Dimensions in mm

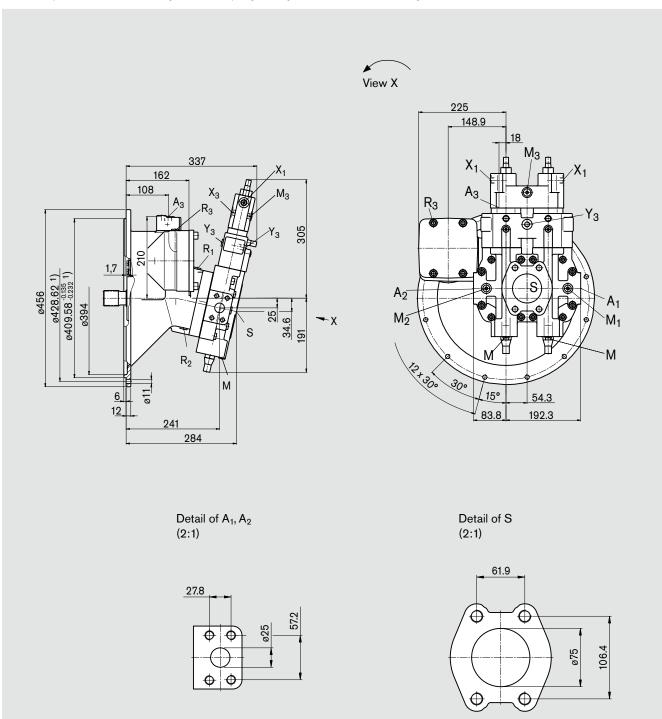

LA0H2, LA1H2

Individual power controller with hydraulic stroke limiter and external pilot pressure supply (positive control)

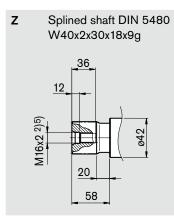

LAOK, LA1K

Individual power controller with hydraulic power coupling

LA0KH2, LA1KH2


Individual power controller with hydraulic power coupling, hydraulic stroke limiter and external pilot pressure supply (positive control)

Before finalizing your design, please request a binding installation drawing. Dimensions in mm


LA0KH1/H3, LA1KH1/H3

Individual power controller with hydraulic coupling and hydraulic stroke limiter (negative control)

¹) Dimensions according to SAE J617-No. 3, for connection to flywheel case in internal combustion engine.

Shaft end

Ports

A ₁ , A ₂ Service line ports (high-pressure series)	SAE J518	1in	
Fixing thread	DIN 13	M12x1.75; 17 deep ⁵)	
S Suction port (standard series)	SAE J518	3in	
Fixing thread	DIN 13	M16x2; 21 deep ⁵)	
A ₃ Service line port (auxiliary pump)	DIN 3852	M18x1.5; 12 deep	140 Nm ⁵)
R_1 , R_3 Air bleed port ⁶)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
R ₂ Fluid drain ⁶)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
M Gauge port for control pressure ⁶)	DIN 3852	M12x1.5; 12 deep	50 Nm ⁵)
M_1 , M_2 Gauge port for high-pressure ⁶)	ISO11926	9/16-18UNF-2B;12 deep	80 Nm ⁵)
M_3 Gauge port for power override ³) ⁶)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
X ₁ Pilot pressure port for hydraulic stroke limiter	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
X ₃ Pilot pressure port for power override ³)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
X ₄ Pilot pressure port for load sensing	DIN 3852	M14x1.5;12 deep	80 Nm ⁵)
Y ₃ External control pressure port ⁴) ⁷)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)

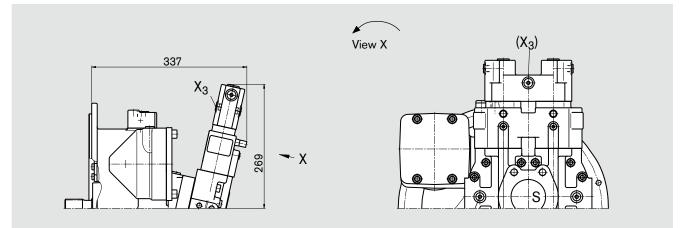
²) Center bore according to DIN 332 (thread according to DIN 13)

³) On the LA0 version, the port has no function

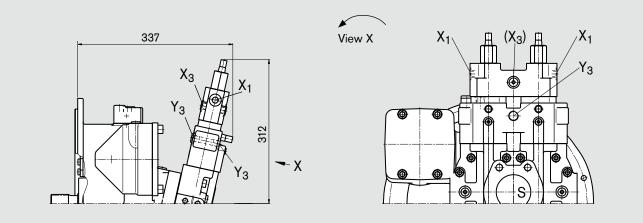
⁴) Only for versions LA...H2 and LA...H3
 ⁵) Please observe the general notes for the max. tightening torques on page 40.

- ⁶) Plugged
- 7) 1x plugged, 1x open

Before finalizing your design, please request a binding installation drawing. Dimensions in mm

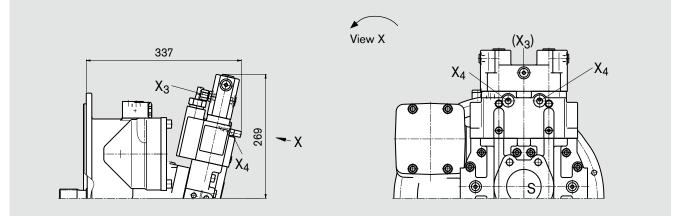

LA0H2, LA1H2

Individual power controller with hydraulic stroke limiter and external pilot pressure supply (positive control)


LAOK, LA1K

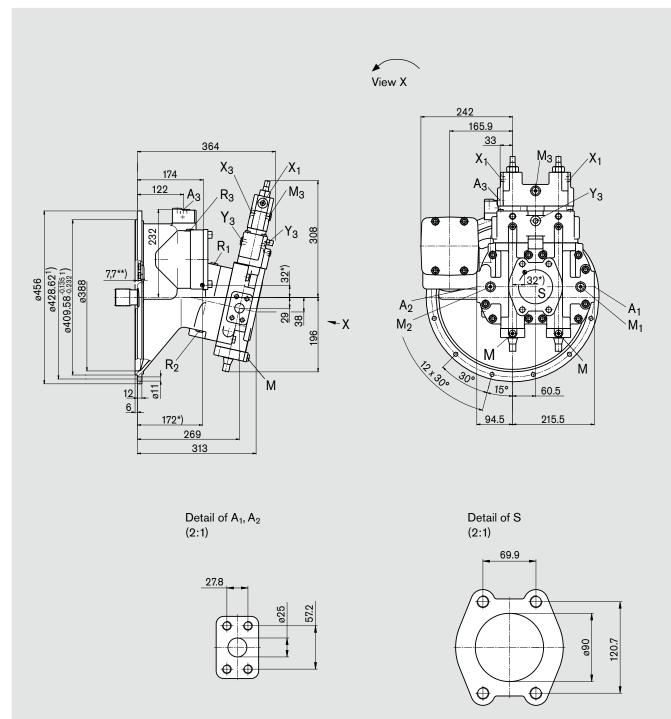
Individual power controller with hydraulic power coupling

LA0KH2, LA1KH2


Individual power controller with hydraulic power coupling, hydraulic stroke limiter and external pilot pressure supply (positive control)

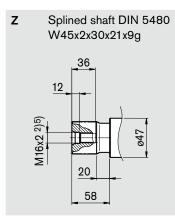
Before finalizing your design, please request a binding installation drawing. Dimensions in mm

LA0KS, LA1KS


Individual power controller with hydraulic power coupling and load sensing

Before finalizing your design, please request a binding installation drawing. Dimensions in mm

LA0KH1/H3, LA1KH1/H3


Individual power controller with hydraulic coupling and hydraulic stroke limiter (negative control)

*) Center of gravity **) with auxiliary pump 10.7 cm³ = 4.7 mm

1) Dimensions according to SAE J617-No. 3, for connection to flywheel case in internal combustion engine.

Shaft end

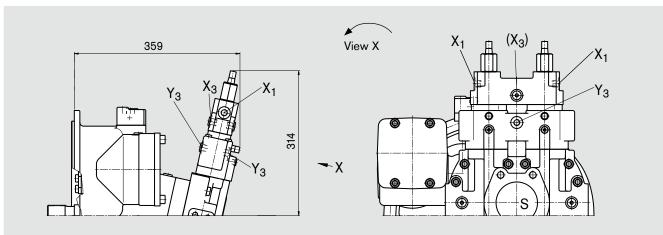
Ports

A_1, A_2	Service line ports (high-pressure series)	SAE J518	1in	
	Fixing thread	DIN 13	M12x1.75; 17 deep ⁵)	
S	Suction port (standard series)	SAE J518	3 1/2in	
	Fixing thread	DIN 13	M16x2; 21 deep ⁵)	
A ₃	Service line port (auxiliary pump)	DIN 3852	M18x1.5; 12 deep	140 Nm ⁵)
R1, R3	Air bleed port ⁶)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
R_2	Fluid drain ⁶)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
М	Gauge port for control pressure ⁶)	DIN 3852	M12x1.5; 12 deep	50 Nm ⁵)
M_1, M_2	Gauge ports for high-pressure ⁶)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
M ₃	Gauge port for power override ³) ⁶)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
X ₁	Pilot pressure port for hydraulic stroke limiter	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
X ₃	Pilot pressure port for power override ³)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
X4	Pilot pressure port for load sensing	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
Υ ₃	External control pressure port 4) 7)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)

²) Center bore according to DIN 332 (thread according to DIN 13)

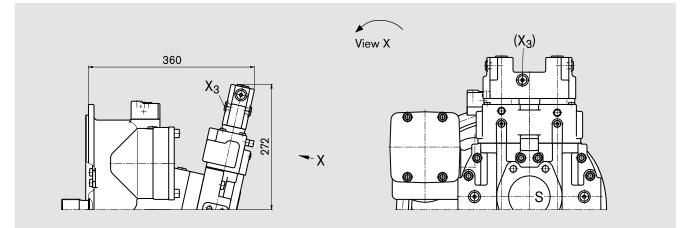
³) On the LA0 version, the port has no function

⁴) Only for versions LA...H2 and LA...H3
 ⁵) Please observe the general notes for the max. tightening torques on page 40.

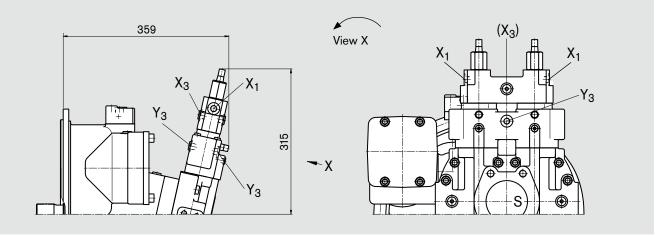

⁶) Plugged

7) 1x plugged, 1x open

Before finalizing your design, please request a binding installation drawing. Dimensions in mm


LA0H2, LA1H2

Individual power controller with hydraulic stroke limiter and external pilot pressure supply (positive control)


LAOK, LA1K

Individual power controller with hydraulic power coupling

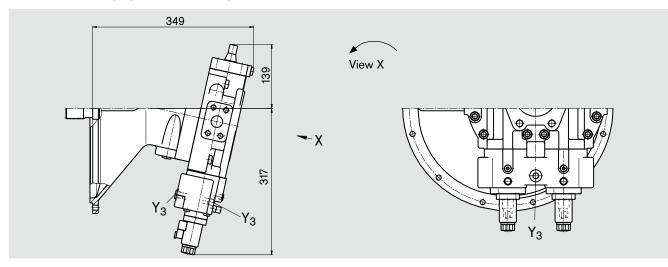
LA0KH2, LA1KH2

Individual power controller with hydraulic power coupling, hydraulic stroke limiter and external pilot pressure supply (positive control)

Before finalizing your design, please request a binding installation drawing. Dimensions in mm

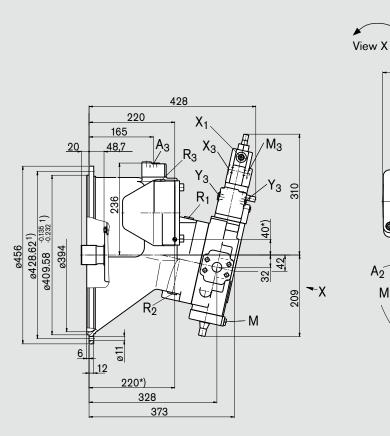
LAOS, LA1S

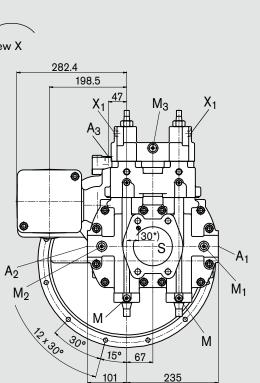
Individual power controller with load sensing


LAOKS, LA1KS

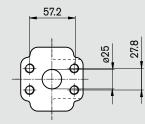
Individual power controller with hydraulic power coupling and load sensing

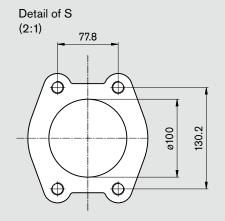
EP2

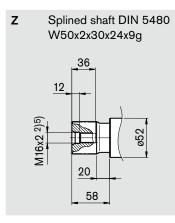

Electric control with proportional solenoid (positive control)



Before finalizing your design, please request a binding installation drawing. Dimensions in mm


LA0KH1/H3, LA1KH1/H3


Individual power controller with hydraulic coupling and hydraulic stroke limiter (negative control)



Detail of A₁, A₂ (2:1)

Shaft end

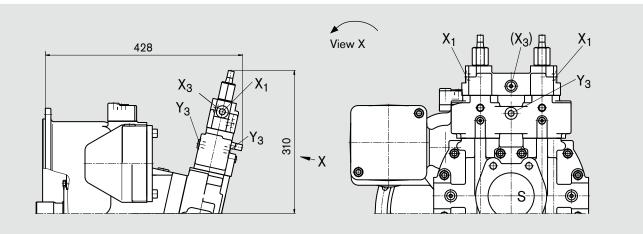
Ports

A ₁ , A ₂	Service line ports (high-pressure series)	SAE J518	1in	
	Fixing thread	DIN 13	M12x1,75; 17 deep ⁵)	
S	Suction port (standard series)	SAE J518	4in	
	Fixing thread	DIN 13	M16x2; 21 deep ⁵)	
A ₃	Service line port (auxiliary pump)	DIN 3852	M18x1.5; 12 deep	140 Nm ⁵)
R ₁ , R ₃	Air bleed port ⁶)	DIN 3852	M18x1.5; 12 deep	140 Nm ⁵)
R_2	Fluid drain ⁶)	DIN 3852	M18x1.5; 12 deep	140 Nm ⁵)
М	Gauge port for control pressure ⁶)	DIN 3852	M12x1.5; 12 deep	50 Nm ⁵)
M ₁ , M ₂	₂ Gauge port for high-pressure ⁶)	ISO11926	9/16-18UNF-2B;12 deep	80 Nm ⁵)
Mз	Gauge port for power override ³) ⁶)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
X ₁	Pilot pressure port for hydraulic stroke limiter	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
X ₃	Pilot pressure port for power override ³)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
X_4	Pilot pressure port for load sensing	DIN 3852	M14x1.5;12 deep	80 Nm ⁵)
Υ ₃	External control pressure port ⁴) ⁷)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)

²) Center bore according to DIN 332 (thread according to DIN 13)

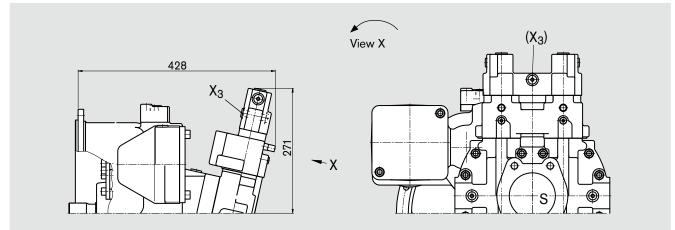
³) On the LA0 version, the port has no function

⁴) Only for versions LA...H2 and LA...H3
 ⁵) Please observe the general notes for the max. tightening torques on page 40.

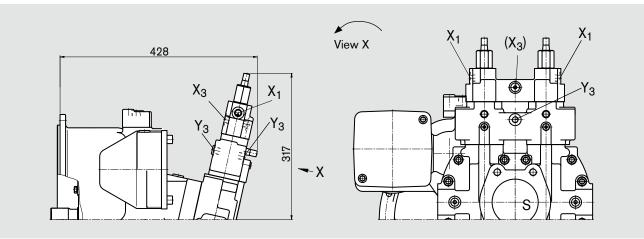

⁶) Plugged

7) 1x plugged, 1x open

Before finalizing your design, please request a binding installation drawing. Dimensions in mm

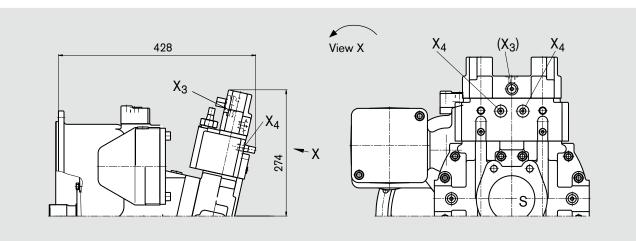

LA0H2, LA1H2

Individual power controller with hydraulic stroke limiter and external pilot pressure supply (positive control)

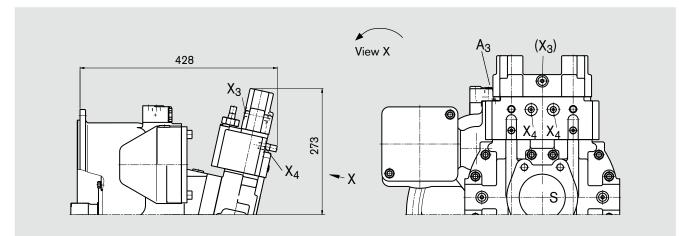

LAOK, LA1K

Individual power controller with hydraulic power coupling

LA0KH2, LA1KH2


Individual power controller with hydraulic power coupling, hydraulic stroke limiter and external pilot pressure supply (positive control)

Before finalizing your design, please request a binding installation drawing. Dimensions in mm

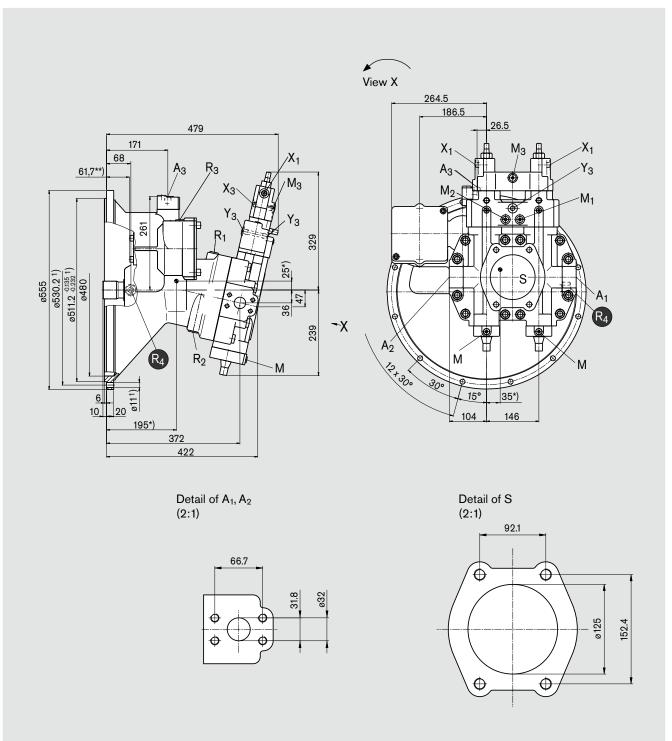

LAOS, LA1S

Individual power controller with load sensing

LAOKS, LA1KS

Individual power controller with hydraulic power coupling and load sensing

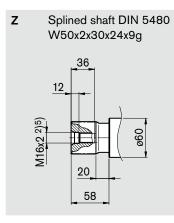
EP2


Electric control with proportional solenoid (positive control)

Before finalizing your design, please request a binding installation drawing. Dimensions in mm

LA0KH1/H3, LA1KH1/H3

Individual power controller with hydraulic coupling and hydraulic stroke limiter (negative control)


R -Must be connected to tank to ensure cooling and lubrication of bearing sets.

*) Center of gravity

**) with auxiliary pump $19 \text{ cm}^3 = 48.3$

¹) Dimensions according to SAE J617-No. 1, for connection to flywheel case in internal combustion engine, hole diam. 11 mm for new projects only (previous types with short code G and hole diam. 14 mm)

Shaft end

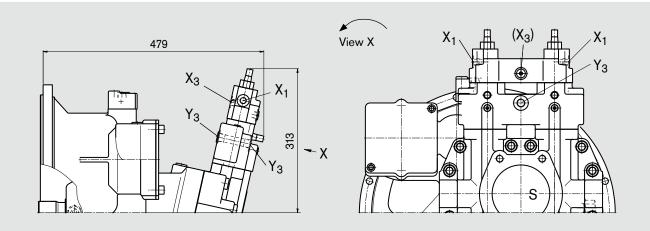
Ports

A ₁ , A ₂ Service line ports (high-pressure series)	SAE J518	1 1/4in	
Fixing thread	DIN 13	M12x1.75; 19 deep ⁵)	
S Suction port (standard series)	SAE J518	5in	
Fixing thread	DIN 13	M16x2; 23 deep ⁵)	
A ₃ Service line port (auxiliary pump)	DIN 3852	M18x1.5; 12 deep	140 Nm ⁵)
R_1 , R_3 Air bleed port ⁶)	DIN 3852	M22x1.5; 12 deep	210 Nm ⁵)
R ₂ Fluid drain ⁶)	DIN 3852	M22x1.5; 12 deep	210 Nm ⁵)
R ₄ Flushing fluid port ⁶)	DIN 3852	M18x1.5; 12 deep	140 Nm ⁵)
M Gauge port for control pressure ⁶)	DIN 3852	M12x1.5; 12 deep	50 Nm ⁵)
M_1 , M_2 Gauge port for high-pressure ⁶)	ISO11926	9/16-18UNF-2B;12 deep	80 Nm ⁵)
M_3 Gauge port for power override ³) ⁶)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
X ₁ Pilot pressure port for hydraulic stroke limiter	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
X ₃ Pilot pressure port for power override ³)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)
X ₄ Pilot pressure port for load sensing	DIN 3852	M14x1.5;12 deep	80 Nm ⁵)
Y ₃ External control pressure port ⁴) ⁷)	DIN 3852	M14x1.5; 12 deep	80 Nm ⁵)

²) Center bore according to DIN 332 (thread according to DIN 13)

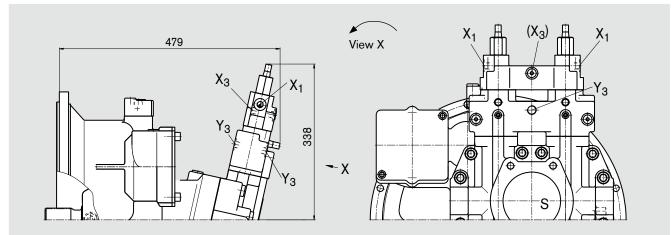
³) On the LA0 version, the port has no function

⁴) Only for versions LA...H2 and LA...H3
 ⁵) Please observe the general notes for the max. tightening torques on page 40.

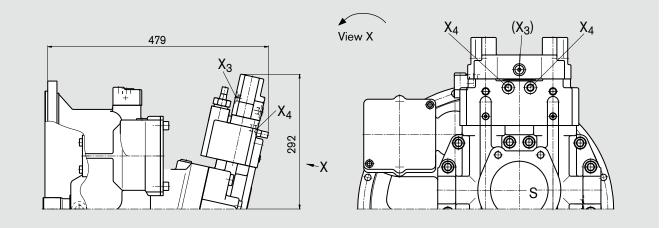

⁶) Plugged

7) 1x plugged, 1x open

Before finalizing your design, please request a binding installation drawing. Dimensions in mm

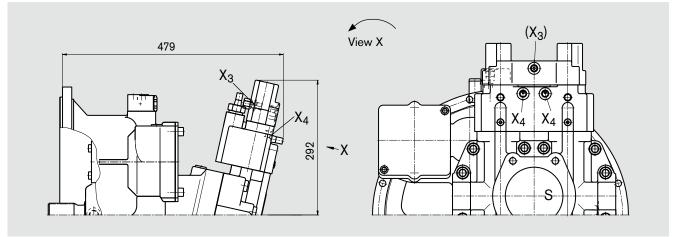

LA0H2, LA1H2

Individual power controller with hydraulic stroke limiter and external pilot pressure supply (positive control)


LA0KH2, LA1KH2

Individual power controller with hydraulic power coupling, hydraulic stroke limiter and external pilot pressure supply (positive control)

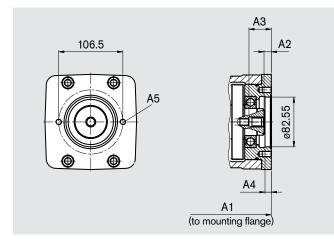
LAOS, LA1S


Individual power controller with load sensing

Before finalizing your design, please request a binding installation drawing. Dimensions in mm

LA0KS, LA1KS

Individual power controller with hydraulic power coupling and load sensing



Before finalizing your design, please request a binding installation drawing. Dimensions in mm

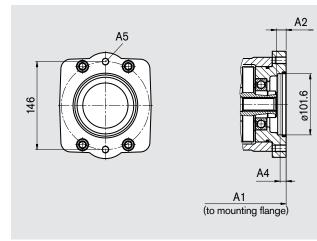
Power Take-off Dimensions

K01/F01 Flange SAE J744 - 82-2 (A)

Hub for splined shaft according to ANSI B92.1a-1976 5/8in 9T 16/32DP 1) (SAE J744 - 16-4 (A))

Size	A1	A2	A3	A4	A5 ²)
55	178	10.1	35.1	10.5	M10x1.5;15 deep
80	178	10.1	35.1	10.5	M10x1.5;15 deep
107	190	12.1	37.1	10.5	M10x1.5;15 deep
140	232	11.1	36.1	10.1	M10x1.5;14 deep
200	260	12	37	10.2	M10x1.5;15 deep

Note related to the position of the fixing threads:


Standard position is shown. Further positions of the fixing threads available on request. Please specify in clear text.

K02/F02 Flange SAE J744 - 101-2 (B)

Hub for splined shaft according to ANSI B92.1a-1976 7/8in 13T 16/32DP 1) (SAE J744 - 22-4 (B))

K04/F04 Flange SAE J744 - 101-2 (B)

Hub for splined shaft according to ANSI B92.1a-1976 1in 15T 16/32DP ¹) (SAE J744 – 25-4 (B-B))

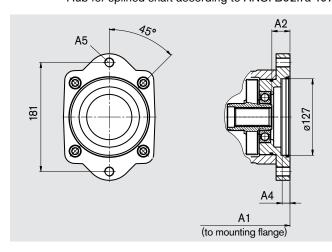
K02/F02. K04/F04

102/1	02,1104			
Size	A1	A2	A4	A5 ²)
55	185	13.1	10	M12x1.75;18 deep
80	185	13.1	10	M12x1.75;18 deep
107	197	16.1	10	M12x1.75;18 deep
140	243	15.1	12.1	M12x1.75;18 deep
200	262.5	14.5	10.4	M12x1.75;18 deep

Note related to the position of the fixing threads:

Standard position is shown. Further positions of the fixing threads available on request. Please specify in clear text.

1) 30° pressure angle, flat root, side fit, tolerance class 5


²) Thread according to DIN13, please observe the general notes for the max. tightening torques on page 40.

Before finalizing your design, please request a binding installation drawing. Dimensions in mm

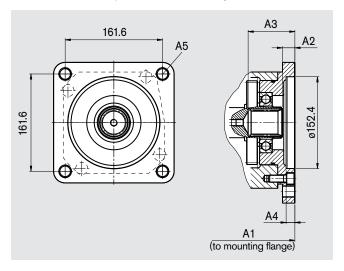
(SAE J744 - 32-4 (C))

Power Take-off Dimensions

K07/F07 Flange SAE J744 – 127-2 **(C)** Hub for splined shaft according to ANSI B92.1a-1976 1 1/4in 14T 12/24DP ¹)

Size	A1	A2	A3	A4	A5 ²)
55					
80	185	16.1	59.1 ³)	13	M16x2
107	197	30.1	_	13	M16x2
140	243	15.1	_	13	M16x2
200	267.5	19.5	_	11	M16x2

3) Illustration as for K01


Note related to the position of the fixing threads:

Standard position is shown. Further positions of the fixing threads available on request. Please specify in clear text.

 K86/F86
 Flange SAE J744 - 152-4 (D)

 Hub for splined shaft according to ANSI B92.1a-1976
 1 1/4in 14T 12/24DP 1)
 (SAE J744 - 32-4 (C))

K17/F17 Flange SAE J744 – 152-4 (D) Hub for splined shaft according to ANSI B92.1a-1976 1 3/4in 13T 8/16DP ¹) (SAE J744 – 44-4 (D))

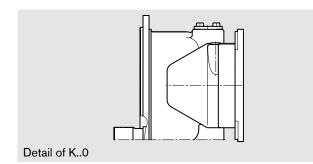
K86/F86, K17/F17					
Size	A1	A2	A3	A4	A5 ²)
140	248.5	20.6	77.6	14.5	M20x2.5
200	267.5	19.5	76.5	14.5	M20x2.5

 $^{1})$ 30° pressure angle, flat root, side fit, tolerance class 5

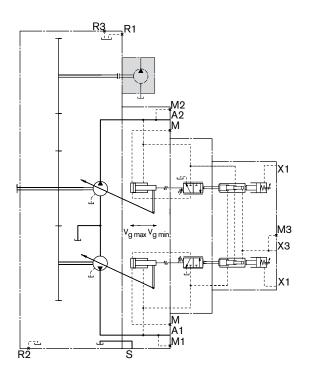
²) Thread according to DIN13, please observe the general notes for the max. tightening torques on page 40.

Overview of Attachments

									Size G Sizes 38-45 ¹)
	1in	04	_	28 (S)	28,45 (S)	-	45 (S, R)	40 (S)	-
127-2 (C)	1 1//in	07	_	40, 56, (S)		_	60 (U, W) 60 (S)	60 (S) ²)	_
	e-off – A8VO1		-	40, 30, (3)	-		00 (3)	00(0))	
82-2 (A)		01	-	-	-	-	-	-	Size F Sizes 4-22 ¹)
101-2 (B)	7/8in	02	16, 22, 28 (S)	-	18 (S)	28 (S, R) 45 (U)	28 (S, R) 45 (U, W)	_	Size N Sizes 20-32 ¹) Size G Sizes 38-45 ¹)
	1in	04	-	28 (S)	28,45 (S)	45 (S, R)	45 (S, R) 60 (U, W)	40 (S)	-
127-2 (C)	1 1/4in	07	-	40, 56, 71 (S)	-	-	60 (S)	60 (S)	-
Power tak	e-off - A8VO1	40	I.						
82-2 (A)	5/8in	01	-	-	-	-	-	-	Size F Sizes 4-22 ¹)
101-2 (B)	7/8in	02	16, 22, 28 (S)	-	18 (S)	28 (S, R) 45 (U)	28 (S, R) 45 (U, W)	_	Size N Sizes 20-32 ¹) Size G Sizes 38-45 ¹)
	1in	04	-	28 (S)	28,45 (S)	45 (S, R)	45 (S, R) 60 (U, W)	40 (S)	-
127-2 (C)	1 1/4in	07	-	40, 56, 71 (S)	63 (S)	71 (S, R) 100 (U)	60 (S) 85 (U)	60(S)	-
152-4 (D)	1 1/4in	86	-	-	_	-	-	75 (S)	-
	1 3/4in	17	-	90 (S)	-	140 (S)	-	95 (S)	-
	e-off - A8VO2	200	I.						
82-2 (A)		01	_	-	_	-	-	-	Size F Sizes 4-22 ¹)
101-2 (B)	7/8in	02	16, 22, 28 (S)	-	18 (S)	28 (S, R) 45 (U)	28 (S, R) 45 (U, W)	-	Size N Sizes 20-32 ¹) Size G Sizes 38-45 ¹)
	1in	04	_	28 (S)	28,45 (S)	45 (S, R)	45 (S, R) 60 (U, W)	40 (S)	-
127-2 (C)	1 1/4in	07	-	40, 56, 71 (S)	-	71 (S, R) 100 (U)	60 (S) 85 (U)	60 (S)	-
152-4 (D)	1 1/4in	86	_	_	_	-	-	75 (S)	_
. ,	1 3/4in	17	-	90, 125 (S)	-	140 (S)	-	95, 130 (S)	-

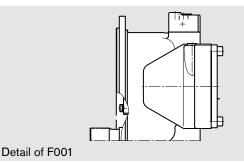

¹) Rexroth recommends special gear pump versions. Please contact us.

 $^{2}\)$ For mounting the A11VO size 60, side threaded ports for A_{1} and A_{2} are required. Please contact us.

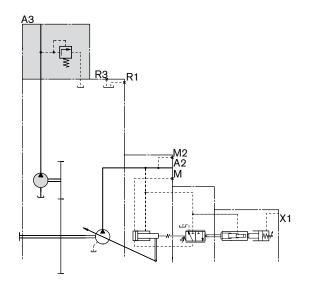

Power Take-off, Auxiliary Pump and Valves

Variation:

with power take-off, without integrated auxiliary pump, K..0

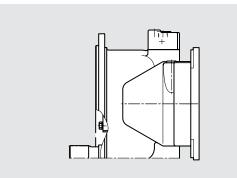


For technical data, see table of values on page 6. For mounting on PTO: Axial piston pumps and gear pumps



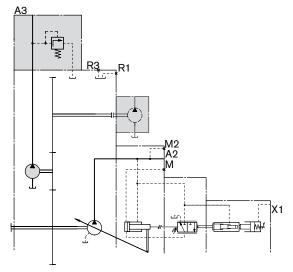
Variation:

without power take-off, with integrated auxiliary pump (pilot fluid pump) and pressure-relief valve, F001

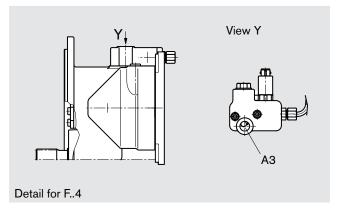

For technical data, see table of values on page 6. The pressure-relief valve installed to protect the integrated auxiliary pump has a fixed setting of 30 bar.

Power Take-off, Auxiliary Pump and Valves

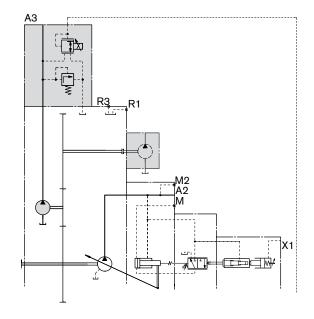
Variation:


with power take-off, with integrated auxiliary pump (pilot fluid pump) and pressure-relief valve, F.1

Detail for F..1


For technical data, see table of values on page 6. The pressure-relief valve installed to protect the integrated auxiliary pump has a fixed setting of 30 bar. For mounting on PTO: Avial picton pumpe and goer pumpe

Axial piston pumps and gear pumps


Variation:

with power take-off, with integrated auxiliary pump (pilot fluid pump), with pressure-relief and pressure-reduction valves, F.4

For technical data, see table of values on page 6. The pressure-relief valve installed to protect the integrated auxiliary pump has a fixed setting of 30 bar. An electrically controlled pressure-reduction valve can be used to override the power setting (load-limiting control).

Pressure-reduction valve control voltage: F..4 \rightarrow 24V DC Recommended frequency \rightarrow >100Hz For mounting on PTO: Axial piston pumps and gear pumps

Connector for Solenoids (only for EP)

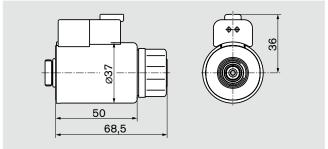
DEUTSCH DT04-2P-EP04, 2-pin

Molded, without bi-directional suppressor diode (standard)

Type of protection according to DIN/EN 60529: IP67 and IP69K

Ρ

Mating connector


DEUTSCH DT06-2S-EP04

Rexroth Mat. No. R902601804

consisting o	DT designation
- 1 case	DT06-2S-EP04
– 1 wedge	W2S

- 2 sockets _____0462-201-16141

The mating connector is not included in supply. This can be supplied by Rexroth on request.

Note for round solenoids:

The position of the connector can be changed by turning the solenoid body.

The following procedure is to be observed:

- 1. Loosen the fixing nut (1)
- 2. Turn the solenoid body (2) to the desired position
- Tighten the fixing nut Tightening torque of fixing nut: 5⁺¹ Nm (width across flats WAF26, 12-sided DIN 3124)

Installation Notes

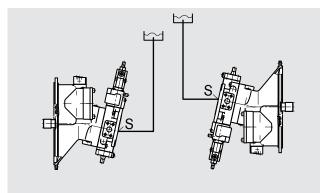
General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This is also to be observed following a relatively long standstill as the system may empty via the hydraulic lines.

The case drain chamber is internally connected to the suction chamber. A case drain line to the tank is not required.

Note the special feature of size 200 for flushing fluid. (Port R4)

In all operational states, the suction line must flow into the tank below the minimum fluid level.


The minimum suction pressure at port S must not fall below of 0.8 bar absolute.

Installation position

Shaft horizontal.

Below-tank installation

Below-tank installation is when the pump is fitted below the minimum fluid level in the tank.

Notice

General Notes

- The A8VO pump is designed to be used in open circuits.
- Project planning, assembly and commissioning of the pump require the involvement of qualified personnel.
- The service line ports and function ports are only designed for mounting hydraulic lines.
- During and shortly after operation, there is a risk of burns on the pump and especially on the solenoids. Take suitable safety precautions, e.g. wear protective clothing.
- There may be shifts in the characteristic depending on the operating state of the pump (operating pressure, fluid temperature).
- Tightening torques:
 - The tightening torques specified in this data sheet are maximum values and must not be exceeded (maximum values for screw thread).
 - Manufacturer's instruction for the max. permissible tightening torques of the used armatures must be observed!
 - For DIN 13 fixing screws we recommend checking the tightening torque individually according to VDI 2230 Edition 2003.
- The data and information contained herein must be adhered to.

Bosch Rexroth AG Hydraulics Axial Piston Units Glockeraustrasse 2 89275 Elchingen, Germany Phone +49 (0) 73 08 82-0 Fax +49 (0) 73 08 72 74 info.brm-ak@boschrexroth.de

www.boschrexroth.com/axial-piston-pumps

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.